Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: A=1011-1/1012-1
10A=10.(1011-1)/1012-1
10A=1012-10/1012-1
10A=1012-1-9/1012-1
10A=1012-1/1012-1 - 9/1012-1
10A=1-9/1012-1
Tương tự: B=1010+1/1011+1
10B=1+9/1011+1
Vì -9/1012-1 < 9/1011+1 nên 10A < 10B
Vậy A<B
Chúc bạn học tốt!
Giải:
A=10^11-1/10^12-1
10A=10.(10^11-1)/10^12-1
10A=10^12-10/10^12-1
10A=10^12-1-9/10^12-1
10A=10^12-1/10^12-1 + -9/10^12-1
10A=1+ -9/10^12-1
B=10^10+1/10^11+1
10B=10.(10^10+1)/10^11+1
10B=10^11+10/10^11+1
10B=10^11+1+9/10^11+1
10B=10^11+1/10^11+1 + 9/10^11+1
10B=1 + 9/10^11+1
Vì -9/10^12-1 < 9/10^11+1 nên 10A < 10B
=>A < B
Chúc bạn học tốt!
Ta có:
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}-1-\frac{1}{2}-...-\frac{1}{1009}\)
\(=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}=B\)
Sửa lại đề tý: \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2019\cdot2020}\) mới có thể tính được nhé!
Ta có: \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2019\cdot2020}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(\Rightarrow A=1-\frac{1}{2020}=\frac{2020}{2020}-\frac{1}{2020}=\frac{2019}{2020}\)
Đến đây bạn tự làm tiếp nhé! Phân tích đến đây là dễ r =)
đề là như vậy bạn à ban đầu mk cũng nghĩ là sai đề nhg ko phải tại vì là đề thi HSG
ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)
\(A=\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2017}+\frac{1}{2018}\)
\(\Rightarrow A=B\left(=\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2017}+\frac{1}{2018}\right)\)
\(\Rightarrow\frac{A}{B^{2018}}=\frac{A}{A.B^{2017}}=\frac{1}{B^{2017}}\)
=> \(\frac{A}{B^{2018}}=\frac{1}{\left(\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2017}+\frac{1}{2018}\right)^{2017}}\)
Ta có :
A = n / 2n + 1 = 3n / 3 ( 2n + 1 ) = 3n / 6n + 3
Vì 3n / 6n + 3 < 3n + 1/ 6n + 3 => A < B
Vậy A < B
Lời giải:
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}=\frac{n(n+2)+(n+1)^2}{(n+1)(n+2)}=\frac{2n^2+4n+2}{n^2+3n+2}>1\) do $2n^2+4n+2> n^2+3n+2$ với mọi $n\in\mathbb{N}^*$
$B=\frac{2n+1}{2n+3}< 1$ do $2n+1< 2n+3$
Do đó $A>B$