Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\frac{x}{x-1}+\frac{3}{x+1}-\frac{6x-4}{x^2-1}\)
\(=\frac{x\left(x+1\right)}{x^2-1}+\frac{3\left(x-1\right)}{x^2-1}-\frac{6x-4}{x^2-1}\)
\(=\frac{x^2+x}{x^2-1}+\frac{3x-3}{x^2-1}-\frac{6x-4}{x^2-1}\)
\(=\frac{x^2+x+3x-3-6x-4}{x^2-1}\)
\(=\frac{x^2-2x-7}{x^2-1}\)
Vậy là tối giản rồi đúng không bạn tại gì mình cũng làm ra vậy nhưng không biết đúng hay không. Cám ơn bạn
\(\hept{\begin{cases}\left(m-1\right)x-y=2\\mx+y=m\end{cases}}\) ( \(m\ne0;m\ne1\))
\(\Leftrightarrow\hept{\begin{cases}mx-x-y=2\\mx=m-y\end{cases}\Leftrightarrow\hept{\begin{cases}m-2y-x=2\\y=m-mx\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=m-m\left(m-2y-2\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=3m-m^2+2my\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=\frac{3m-m^2}{1-2m}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-m-2}{1-2m}\\y=\frac{3m-m^2}{1-2m}\end{cases}}\)
Theo bài ra ta có : 2x + y < 0 \(\Leftrightarrow\frac{2\left(-m-2\right)}{1-2m}+\frac{3m-m^2}{1-2m}< 0\)
\(\Leftrightarrow\frac{-m^2+m-4}{1-2m}< 0\Leftrightarrow\frac{-\left(m-\frac{1}{2}\right)^2-\frac{15}{4}}{1-2m}< 0\)
Ta có : \(-\left(m-\frac{1}{2}\right)^2-\frac{15}{4}< 0\)\(\Rightarrow1-2m< 0\Rightarrow m>\frac{1}{2}\)
Vậy \(m>\frac{1}{2}\left(m\ne1\right)\)
Bài 1 :
a, - Gọi chiều dài chiều rộng hình chữ nhật là x và y ( m, x>y> 0 )
Ta có : x - y = 7 ( I )
- Áp dụng định lý pitago ta có : \(x^2+y^2=13^2=169\left(II\right)\)
- Từ (I) và (II ) ta có hệ phương trình : \(\left\{{}\begin{matrix}x=y+7\\x^2+y^2=169\end{matrix}\right.\)
\(\Leftrightarrow y^2+y^2+14y+49=169\)
\(\Leftrightarrow2y^2+14y-120=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=5\left(TM\right)\\y=-12\left(L\right)\end{matrix}\right.\)
=>x = 5 + 7 = 12 (m )
Vậy ...