K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2021

a) Tìm các cặp góc so le trong: P2 và Q3; P3 và Q2

b) Tìm các cặp góc trong cùng phía: P2 và Q2; Pvà Q3

c) Tìm các cặp góc đồng vị: Pvà Q2; p2 và Q1; P3 và Q4' p4 và Q3

d) Tính số đo góc P4:

Ta có: Q2 = P= 50o ( 2 góc đồng vị)

Mà P4 + P1 = 180o ( 2 góc kề bù)

P4 = 180o - P1

P4 = 180o - 50o = 130o

 

19 tháng 8 2023

Hình đâu em?

9 tháng 7 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có: ∆ABC vuông cân tại A

Suy ra: ∠ACB=∠ABC=45o

Lại có: ∆BCD vuông cân tại B (BC = BD)

Suy ra: ∠BCD=∠Dtính chất tam giác cân)

Trong ∆BCD ta có ∠ABC góc ngoài tại đỉnh B

Do vậy: ∠ABC=∠BCD + ∠D (tính chất góc ngoài của tam giác)

Suy ra: ∠ABC= ∠2∠BCD

Do đó: ∠BCD = 1/2 . ∠ABC = 1/2. 45º= 22º30’

=> ∠ACD = ∠ACB + ∠BCD = 45o+22o30'=67o30'

28 tháng 11 2021

hình đâu

hình đâu bạn

 

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

1. Vì MN//BC nên \(\widehat {AMN} = \widehat {ABC}\)( 2 góc đồng vị), mà \(\widehat {ABC} = 60^\circ \)nên \(\widehat {AMN} = 60^\circ \)

Vì \(\widehat {AMN} + \widehat {BMN} = 180^\circ \) (2 góc kề bù)

\(\begin{array}{l} \Rightarrow 60^\circ  + \widehat {BMN} = 180^\circ \\ \Rightarrow \widehat {BMN} = 180^\circ  - 60^\circ  = 120^\circ \end{array}\)

Vì \(\widehat {ANM} + \widehat {MNC} = 180^\circ \)(2 góc kề bù)

\(\begin{array}{l} \Rightarrow \widehat {ANM} + 150^\circ  = 180^\circ \\ \Rightarrow \widehat {ANM} = 180^\circ  - 150^\circ  = 30^\circ \end{array}\)

Vì MN//BC nên \(\widehat {ANM} = \widehat {ACB}\) ( 2 góc đồng vị), mà \(\widehat {ANM} = 30^\circ \)nên \(\widehat {ACB} = 30^\circ \).

2. Vì xx’//yy’ nên \(\widehat {x'AB} = \widehat {ABy}\)( 2 góc so le trong)

Mà zz’\( \bot \) xx’ nên \(\widehat {x'AB} = 90^\circ \)

Do đó, \(\widehat {ABy} = 90^\circ \) nên zz’ vuông góc với yy’.

a: Vì góc aMN=góc MNQ

nên aa'//bb'

b: góc PQN=180-100=80 độ=góc b'Qd'

góc b'Qd=d'QN=180-80=100 độ