K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2022

Ta có:

\(A=1+3+3^2+3^3+3^4+3^5+...+3^{96}+3^{97}+3^{98}\\ \left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\\ =13+3^3.13+...+3^{96}.13\\ =13\left(1+3^3+3^6+...+3^{96}\right)⋮13\Rightarrow A⋮13\)

Để chứng minh \(A⋮20\) ta chứng minh \(\left\{{}\begin{matrix}A⋮4\\A⋮5\end{matrix}\right.\) vì \(\left(4;5\right)=1\)

Ta có:

\(A=1+3+3^2+3^3+3^4+3^5+...+3^{96}+3^{97}+3^{98}\\ =\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^{96}\left(1+3\right)+3^{98}\\ =4\left(1+3^2+3^4+...+3^{96}\right)+3^{98}\)

\(3^{98}\) có chữ số tận cùng có thể là 1;3;7;9 nên \(3^{98}\) không chia hết cho 4

Vậy A không thể chia hết cho 20.

b.

Ta có:

\(A=1+3+3^2+3^4+3^5+3^6+...+3^{96}+3^{97}+3^{98}\\ \Rightarrow3A=3+3^2+3^4+3^5+3^6+...+3^{96}+3^{97}+3^{99}\\ \Rightarrow3A-A=3^{99}-1\)

\(\Rightarrow A=\dfrac{3^{99}-1}{2}\)

Ta thấy \(3^4=81\Rightarrow3^{99}=3^{96}.3^3=\left(3^4\right)^{24}.3^3=\overline{...7}\)

\(\Rightarrow3^{99}-1=\overline{...7}-1=\overline{...6}\\ \Rightarrow\dfrac{3^{99}-1}{2}=\dfrac{\overline{...6}}{2}=\overline{...3}\)

Đs....

 

30 tháng 7 2018

a)ta có 74n-1 = (74)n-1 = 2401n - 1 = ...1-1=...0   \(⋮\) 10 { vì 2041 có tận cùng bằng 1 nên 2041 mũ mấy cũng có tận cùng bằng 1 nên 2041n có tận cùng bằng 1}

b) ta có 92n+1+1 = (92). 9 + 1 = 81n .9 +1 = ..1 .9 +1=..9+1=..0   \(⋮\)10 { vì 81 có tận cùng bằng 1 nên 81 mũ mấy cũng có tận cùng bằng 1 nên 81n có tận cùng bằng 1}

cho mik mik giải nốt bài 2 cho

29 tháng 10 2020

LEU LEU KO

S=1+2+22+23+.....+297+298+299

S=20+2+22+23+.....+297+298+299

2S=2.(20+2+22+23+.....+297+298+299)

2S=21+22+23+24+....+298+299+2100

2S-S=(21+22+23+24+....+298+299+2100)-(20+2+22+23+.....+297+298+299)

S=2100-20

S=2100-1

bS=1+2+22+23+.....+297+298+299

 S=(1+2)+(22+23)+...+(296+297)+(298+299)

S=(1+2)+22.(1+2)+........+296.(1+2)+298.(1+2)

S=3+22.3+....+296.3+298.3

S=3.(1+22+.....+296+298)\(⋮\)3

Vậy S\(⋮\)

c Ta có:S=2100-1

2100=24.25=(24)25

Ta có: 24 tân cùng là 6

=>(24)25 tận cùng là 6

Hay 2100=(24)25 tận cùng là 6

=>2100-1 tận cùng là 5

Vậy S tận cùng là 5

Chúc bn học tốt

23 tháng 11 2016

\(M=1+3+3^2+3^3+....+3^{47}+3^{48}+3^{49}\)

\(M=\left(1+3+3^2\right)+...+\left(3^{47}+3^{48}+3^{49}\right)\)

\(M=13\left(1+....+17\right)⋮13\left(\text{đ}pcm\right)\)

 

29 tháng 11 2018

a)

    \(S=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2015}+3^{2016}\right)\)

\(S=3\cdot12+3^2\cdot12+...+3^{2014}\cdot12=12\cdot\left(3+3^2+...+3^{2014}\right)⋮4\)

\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2014}+3^{2015}+3^{2016}\right)\)

\(S=3\cdot13+3^4\cdot13+...+3^{2014}\cdot13=13\cdot\left(3+3^4+...+3^{2014}\right)⋮13\)

b)

Tính S:

\(3S-S=\left(3^2+3^3+...+3^{2017}\right)-\left(3+3^2+3^3+...+3^{2016}\right)\)

\(2S=3^{2017}-3\) suy ra \(2S+3=3^{2017}\) là 1 lũy thừa của 3.

c)

  Ta có \(S=\frac{3^{2017}-3}{2}\)

\(3^{2017}=\left(3^4\right)^{504}\cdot3=81^{504}\cdot3\)có tận cùng là 3.(Tự hiểu nha em)

Do đó \(3^{2017}-3\)tận cùng là 0 nên S có tận cùng là 0

9 tháng 6 2019

\(S=3+3^2+3^3+3^4+...+3^{2016}\)

\(3S=3^2+3^3+3^4+3^5+....+3^{2017}\)

\(3S-S=\left(3^2+3^3+3^4+...+3^{2017}\right)-\left(3+3^2+3^3+...+3^{2017}\right)\)

\(2S=3^{2017}-3\)

\(S=\frac{3^{2017}-3}{2}\)

Vậy 2S + 3 = \(\left(\frac{3^{2017}-3}{2}\right).2+3\)\(=3^{2017}-3+3=3^{2017}\)

Vậy 2S + 3 là một lũy thừa của 3 (đpcm) 

1 tháng 11 2015

thui tui di bệnh viện đây

24 tháng 12 2019

Giúp mình với mình k 3 k cho người nào trả lời đúng và nhanh nhất ( cách giải nữa nha ! ) Thank you~