Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
17)\(AH^2=\frac{3b^2}{4};\Delta BCD;AD=b-\frac{a^2}{b}\)
MÀ \(AD^2=AH^2+DH^2=b^2-ab+a^2\)
Kẻ OI vuông góc với AB tại I
a) Ta có:
OI // GF => \(\frac{AI}{AF}=\frac{OI}{GF}\)
OI//HE => \(\frac{BO}{BH}=\frac{BI}{BE}=\frac{OI}{HE}\)
mà HE = GF
=> \(\frac{BO}{BH}=\frac{AI}{AF}=\frac{BI}{BE}=\frac{AI+BI}{AF+BE}=\frac{AB}{AB+EF}\)
=> \(\frac{BH}{BO}=\frac{AB+EF}{AB}=1+\frac{EF}{AB}=1+\frac{HE}{BC}\)vì ABCD; FGHE là hình vuông
=> \(\frac{HE}{BC}=\frac{BH}{BO}-1=\frac{BH-BO}{BO}=\frac{OH}{OB}\)
Xét \(\Delta\)OHE và \(\Delta\)OBC có:
^OHE = ^OBC ( HE//CB; so le trong )
\(\frac{HE}{BC}=\frac{OH}{OB}\)
=> \(\Delta\)OHE ~ \(\Delta\)OBC
b) \(\Delta\)OHE ~ \(\Delta\)OBC
=> ^HEO = ^BCO = ^BCE
mà E và O nằm cùng phía so với BC
=> C; O ; E thẳng hàng
=> CE đi qua O
Chứng minh tương tự như câu a với \(\Delta\)OAD ~ \(\Delta\)OGF
=> D; O; F thẳng hàng
=> DF đi qua O
tui cần sự trao đổi nghiêm túc giửa mọi người vì đây là trang web chung nên tui cần bạn nghiêm túc nếu bạn không có câu tra lời của bài này