K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔCEA vuông tại E và ΔCFB vuông tại F có

góc ACE=góc BCF

=>ΔCEA đồng dạng với ΔCFB

=>CE/CF=CA/CB

=>CE*CF=CA*CB

b: CA/CB=IA/IB

Xét ΔIAE vuông tại E và ΔIBF vuông tại F có

góc AIE=góc BIF

=>ΔIAE đồg dạng với ΔIBF

=>IA/IB=IE/IF=CA/CB=CE/CF

c: Xét ΔCAB vuông tại A có AD là đường cao

nên CA^2=CD*CB

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng vơi ΔHBA

=>AC/HA=AB/HB=BC/AB

=>AB^2=BH*BC; AC*AB=AH*BC

b: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạngvới ΔHAC

=>CA/CH=CB/CA

=>CA^2=CH*CB

d: AI/IC=AB/BC

KH/AH=BH/BA

mà AB/BC=BH/BA

nên AI/IC=KH/AH

3 tháng 5 2019

a, xét tam giác ABD và tam giác ACD có : AD chung

AB = AC do tam giác ABC cân tại A (gt)

góc BAD = góc CAD do AD là phân giác của góc BAC (gt)

=> tam giác ABD = tam giác ACD (c-g-c)

b, tam giác ABD = tam giác ACD (câu a)

=> BD = DC (đn) mà D nằm giữa B; C 

=> D là trung điểm của BC (đn)

=> AD là trung tuyến

CF là trung tuyến

CF cắt AD tại G

=> G là trong tâm của tam giác ABC (đl)

3 tháng 5 2019

c, Ta có : tam giác EDC có EH vừa là đường trung tuyến vừa là đường cao

\(\Rightarrow\)tam giác EDC cân tại E

D, Vì EH // AD \(\Rightarrow\)theo định lí Ta - lét ta có : \(\frac{DH}{HC}=\frac{AE}{EC}\)

Mà HC = HD \(\Rightarrow\)AE = EC \(\Rightarrow\)E là trung điểm AC 

\(\Leftrightarrow\)BE là đường trung tuyến \(\Rightarrow\)Ba điểm B, G , E thẳng hàng 

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF  c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC   .Bài 26...
Đọc tiếp

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. 

a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC 

b ) Chứng minh , BF.FC = DF.EF 

 c ) Tính BC biết DE = 5cm , EF = 4cm 

. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC

 

 

 .Bài 26 : Cho  tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC 

a ) Chứng minh : AH = EF 

b ) Chứng minh : AB^2 = BH.BC 

c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác  ABC 

d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB . 

 

 

Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K. 

a ) Tính BC , AD 

b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB , 

c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .

3
2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do AB⊥AC,HE⊥AB,HF⊥AC

⇒EAF^=AEH^=AFH^=90o

→◊AEHF là hình chữ nhật

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath