K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Do 1−√5<01−5<0 nên hàm số y=(1−√5)x−1y=(1−5)x−1 nghịch biến trên RR.

b) Khi x=1+√5x=1+5, ta có

y=(1−√5)(1+√5)−1=(1−5)−1=−5y=(1−5)(1+5)−1=(1−5)−1=−5.

c) Khi y=√5y=5, ta có

(1−√5)x−1=√5(1−5)x−1=5

⇔(1−√5)x=1+√5⇔(1−5)x=1+5

⇔x=1+√51−√5⇔x=1+51−5

⇔x=−3+√52⇔x=−3+52.

10 tháng 6 2021

a, Vì \(1-\sqrt{5}< 0\)do \(1< \sqrt{5}\)

b, Thay \(x=1+\sqrt{5}\)vào hàm số trên ta được 

\(\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)-1=y\)

\(\Leftrightarrow y=1-5-1=-5\)

Vậy với \(x=1+\sqrt{5}\)thì y = -5

c, Thay y = \(\sqrt{5}\)vào hàm số trên ta được 

\(\sqrt{5}=\left(1-\sqrt{5}\right)x-1\)

\(\Leftrightarrow\sqrt{5}+1=\left(1-\sqrt{5}\right)x\Leftrightarrow x=\frac{\sqrt{5}+1}{1-\sqrt{5}}=-\frac{5+2\sqrt{5}+1}{4}\)

\(=-\frac{2\left(3+\sqrt{5}\right)}{4}=-\frac{3+\sqrt{5}}{2}\)

12 tháng 11 2017

a) Ta có a = 1- √5 < 0 nên hàm số đã cho nghịch biến trên R.

b) Khi x = 1 + √5 ta có:

    y = (1 - √5).(1 + √5) - 1 = (1 - 5) - 1 = -5

c) Khi y = √5 ta có:

    √5 = (1 - √5)x - 1

=> √5 + 1 = (1 - √5)x

Để học tốt Toán 9 | Giải bài tập Toán 9

(hoặc trục căn thức ở mẫu như dưới đây:

Để học tốt Toán 9 | Giải bài tập Toán 9

22 tháng 4 2017

a) Hàm số nghịch biến trên R vì 1 - \(\sqrt{ }\)5 < 0.

b) Khi x = 1 + \(\sqrt{ }\)5 thì y = -5.

c) Khi y = \(\sqrt{ }\)5 thì x = \(\dfrac{-3+\sqrt{5}}{2}\)



22 tháng 4 2017

Bài giải:

a) Hàm số nghịch biến trên R vì 1 - √5 < 0.

b) Khi x = 1 + √5 thì y = -5.

c) Khi y = √5 thì x = -3+√523+52.

24 tháng 10 2021

a, Vì \(5-3\sqrt{2}>0\) nên hs đồng biến trên R

b, \(x=5+3\sqrt{2}\Leftrightarrow y=25-18+\sqrt{2}-1=6+\sqrt{2}\)

c, \(y=0\Leftrightarrow\left(5-3\sqrt{2}\right)x+\sqrt{2}-1=0\Leftrightarrow x=\dfrac{1-\sqrt{2}}{5-3\sqrt{2}}\)

\(\Leftrightarrow x=\dfrac{\left(1-\sqrt{2}\right)\left(5+3\sqrt{2}\right)}{7}=\dfrac{-2\sqrt{2}-1}{7}\)

23 tháng 11 2023

a)

Ta thấy \(\sqrt{3}-2< 0\) nên hàm số trên nghịch biến trên R

b) 

\(\sqrt{3}-7=\left(\sqrt{3}-2\right)x+5\)

\(\Leftrightarrow\sqrt{3}-12=\left(\sqrt{3}-2\right)x\)

\(\Leftrightarrow x=\dfrac{\sqrt{3}-12}{\sqrt{3}-2}\)

13 tháng 11 2021

Cho hàm số y=(1-√5)x-1
a, Hàm số đồng biến hay nghịch biến trên R?vì sao
Hàm số nghịch biến vi (1-√5<0
b,Tính y khi x=1+√5
y=(1-√5)(1+√5)-1
y = -5

23 tháng 11 2018

a, Vì \(1-\sqrt{5}< 0\)nên hàm nghịch biến

b, \(x=1+\sqrt{5}x\)

\(\Leftrightarrow x-x\sqrt{5}=1\)

\(\Leftrightarrow x\left(1-\sqrt{5}\right)=1\)

\(\Leftrightarrow x=\frac{1}{1-\sqrt{5}}\)

Khi đó \(y=\left(1-\sqrt{5}\right).\frac{1}{1-\sqrt{5}}-1=1-1=0\)

b, \(y=-\sqrt{5}\)

\(\Leftrightarrow\left(1-\sqrt{5}\right)x-1=-\sqrt{5}\)

\(\Leftrightarrow\left(1-\sqrt{5}\right)x=1-\sqrt{5}\)

<=> x = 1

21 tháng 7 2020

a) Ta có \(a=1-\sqrt{5}< 0\) nên hàm số đã cho nghịch biến trên R.

b) Khi \(x=1+\sqrt{5}\) ta có:

\(y=\left(1-\sqrt{5}\right).\left(1+\sqrt{5}\right)-1=\left(1-5\right)-1=-5\)

18 tháng 11 2016

B1a) m khác 5, khác -2

b) m khác 3, m < 3

B2a) vì căn 5 -2 luôn lớn hơn 0 nên hsố trên đồng biến

b) h số trên là nghịch biến vì 2x > căn 3x

c) bạn hãy đưa h số về dạng y=ax+b là y= 1/6x+1/3 mà 1/6 >0 => h số đồng biến

AH
Akai Haruma
Giáo viên
12 tháng 9 2021

Lời giải:
a. Vì $\sqrt{3}-1>0$ nên hàm trên là hàm đồng biến trên $\mathbb{R}$

b.

$F(0)=(\sqrt{3}-1).0+1=1$

$F(\sqrt{3}+1)=(\sqrt{3}-1)(\sqrt{3}+1)+1=(3-1)+1=3$

a, hàm số bậc nhất y = (m-2)x +3 đồng biến <=> m-2 > 0

                                                                         <=> m >2

b,hàm số bậc nhất  y =(m-2)x +3 nghịch biến <=> m - 2 <0

                                                                            <=> m < 2  

10 tháng 6 2021

a, Để hàm số trên đồng biến khi

\(m-2>0\Leftrightarrow m>2\)

b, Để hàm số trên nghịch biến khi 

\(m-2< 0\Leftrightarrow m< 2\)