Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, C = 1 + 4 + 42 + 43 + 44 + 45 + 46
4C = 4 + 42 + 43 + 44 + 45 + 46 + 47
b, 4C - C = ( 4+42 + 43 + 44 +45 + 46 + 47 ) - ( 1 + 4 + 42 + 43 +44 +45 + 46 )
3C = 47 - 1
=> C = ( 47 - 1 ) : 3
nhớ k đấy nhé
a) A = 1 + 3 + 32 + ... + 37
3A = 3 ( 1 + 3 + 32 + .. + 37)
3A = 3 + 32 + 33 + ...+ 38
b) Vì 3A = 3 + 32 + 33 + ...+38
2A = 38- 1
A = ( 38-1) : 2 (Điều phải chứng minh)
a) A = 1 + 3 + 32 + ... + 37
3A = 3 ( 1 + 3 + 32 + .. + 37)
3A = 3 + 32 + 33 + ...+ 38
b) Vì 3A = 3 + 32 + 33 + ...+38
2A = 38- 1
A = ( 38-1) : 2 (Điều phải chứng minh)
Mong bạn tick cho mình
Trả lời:
a, \(A=1+2^1+2^2+2^3+...+2^{2007}\)
\(\Rightarrow2A=2\left(1+2^1+2^2+2^3+...+2^{2007}\right)\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2008}\)
b, Ta có:
\(2A-A=2+2^2+2^3+2^4+...+2^{2008}-\left(1+2+2^2+2^3+...+2^{2007}\right)\)
\(\Rightarrow A=2+2^2+2^3+2^4+...+2^{2008}-1-2-2^2-2^3-...-2^{2007}\)
\(\Rightarrow A=\left(2-2\right)+\left(2^2-2^2\right)+\left(2^3-2^3\right)+...+\left(2^{2007}-2^{2007}\right)+2^{2008}-1\)
\(\Rightarrow A=2^{2008}-1\) (đpcm)
Cho A= 1 + 2^1 + 2^2 + 2^3 + ....... + 2^2007
a) Tính 2A
suy ra 2A= 2 + 2^2 + 2^3 + 2^4 + ....... + 2^2008
b) Chứng minh A = 2^8 - 1
đang nghĩ b
a, S = 1 + 2 + 22 + 23 + ... + 22017
Ta có : 2S = 2 + 22 + 23 +.... + 22018
Lấy 2S - S ta được : S = 22018 - 1
b, Đặt S = 3 + 32 + 33 + ... + 32017
Ta có : 3S = 32 + 33 + ... + 32018
Lấy 3S - S ta được 2S = 32018 -3
=> \(S=\frac{3^{2018}-3}{2}\)
c, Đặt S = 4 + 42 + 43 + ... + 42017
Ta có : 4S = 42 + 43 + ... + 42018
Lấy 4S - S ta được 3S = 42018 - 4
=> \(S=\frac{4^{2018}-4}{3}\)
a, S = 1 + 2 + 22 + 23 + ... + 22017
Ta có : 2S = 2 + 22 + 23 +.... + 22018
Lấy 2S - S ta được : S = 22018 - 1
b, Đặt S = 3 + 32 + 33 + ... + 32017
Ta có : 3S = 32 + 33 + ... + 32018
Lấy 3S - S ta được 2S = 32018 -3
=>
c, Đặt S = 4 + 42 + 43 + ... + 42017
Ta có : 4S = 42 + 43 + ... + 42018
Lấy 4S - S ta được 3S = 42018 - 4
=>
Nhiều thế bạn
Đăng từ từ thôi chứ
Làm thì còn lâu mới xong
BCNN( 10; 16; 7) = 560
cl: \(10=2\cdot5\)
\(16=2^4\)
\(7=7\cdot1\)
=> BCNN( 10; 16; 7) = \(2^4\cdot5\cdot7\cdot1=560\)
ok tui làm nè
a) 3B=3+3^2+3^3+...+3^2007
=>3B-B=2B=3^2007-1
=>B=\(\frac{3^{2007}-1}{2}\)
b) ở câu này mình có thể áp dụng hằng đẳng thức \(^{a^n}\)- \(^{b^n}\) nhưng để những bạn ko chuyên hoặc bthuong hiểu mình sẽ làm cách khác
ta có \(^{4^2}\) chia 3 dư 1 => \(^{\left(4^2\right)^3}\)chia 3 dư 1
=>\(^{\left(4^2\right)^3}\).4 chia cho 3 dư 1 nữa
do đó \(^{4^7}\)-1 sẽ chia hết cho 3
dễ mà tự làm ik bạn