Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a) \(\sqrt{2x-4}\) có nghĩa khi:
\(2x-4\ge0\)
\(\Leftrightarrow2x\ge4\)
\(\Leftrightarrow x\ge\dfrac{4}{2}\)
\(\Leftrightarrow x\ge2\)
b) \(\sqrt{\dfrac{-7}{4-x}}\) có nghĩa khi
\(\dfrac{-7}{4-x}\ge0\) mà \(-7< 0\)
\(\Rightarrow4-x\le0\)
\(\Leftrightarrow x\ge4\)
a) ĐKXĐ: \(-x-8\ge0\Leftrightarrow x\le-8\)
b) ĐKXĐ: \(x^2-2x+1>0\Leftrightarrow\left(x-1\right)^2>0\Leftrightarrow x\ne1\)
c) ĐKXĐ: \(\left\{{}\begin{matrix}x-2\ge0\\5-x\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne5\end{matrix}\right.\)
d) ĐKXĐ: \(x^2+3\ge0\left(đúng.do.x^2+3\ge3>0\right)\)
\(a,P=\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{9-x}{x+\sqrt{x}-6}-\frac{\sqrt{x}-3}{2-\sqrt{x}}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)
\(=\left(1-\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(1-\frac{\sqrt{x}}{\sqrt{x}+3}\right):\left(\frac{3-\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}+3}:\left(\frac{3-\sqrt{x}+\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{3}{\sqrt{x}+3}:\frac{2-\sqrt{x}}{\sqrt{x}+3}\)
\(=\frac{3}{2-\sqrt{x}}\)
b, Để P > 0 thì \(2-\sqrt{x}>0\Leftrightarrow\sqrt{x}< 2\Leftrightarrow0\le x< 4\)(Thỏa mãn DKXD)
\(c,Q=P\left(x+1\right)=\frac{3\left(x+1\right)}{2-\sqrt{x}}\)
Ko biết e đã học miền giá trị chưa nhỉ ???
Bài 1:
1. \(\sqrt{a}\)có nghĩa <=> \(a\ge0\)
2. a) \(\sqrt{2x+6}\)có nghĩa <=> \(2x+6\ge0\)
\(\Leftrightarrow2x\ge-6\)
\(x\ge-3\)
b)\(\sqrt{\frac{-2}{2x-3}}\) có nghĩa \(\Leftrightarrow\frac{-2}{2x-3}\ge0\)
có -2 < 0
\(\Leftrightarrow\hept{\begin{cases}2x-3\ne0\\2x-3\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x\ne3\\2x\le3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne\frac{3}{2}\\x\le\frac{3}{2}\end{cases}}\)
\(\Rightarrow x< \frac{3}{2}\)
Bài 4 :
\(P=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-1\right).\sqrt{x}}-\frac{\sqrt{x}-1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right):\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right)\)
\(\Leftrightarrow\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right):\left(\frac{\left(x-1\right)-\left(x-4\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}\right)\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right):\left(\frac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(\sqrt{x}-2\right).\left(\sqrt{x}-1\right)}{3}\right)\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}\) \(\left(ĐKXĐ:x>0;x\ne4;x\ne1\right)\)
b) \(P=\frac{1}{4}\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}=\frac{1}{4}\)
\(\Leftrightarrow4\sqrt{x}-8=3\sqrt{x}\)
\(\Leftrightarrow4\sqrt{x}-3\sqrt{x}=8\)
\(\Leftrightarrow\sqrt{x}=8\)
\(\Leftrightarrow x=64\left(TMĐXĐ\right)\)
Vậy khi \(P=\frac{1}{4}\) thì x=64