K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

Vì 6=23 và (2.3)=1

Ta có:

n^3+3n^2+n=n^2(n+1)+2n(n+1) =n(n+1)(n+2)

Nhận thấy n(n+1)(n+2) là tích 3 số nguyên liên tiếp

suy ra Tồn tại 1 số chia hết cho 2 (vì n(n+1) là tích 2 số nguyên liên tiếp)   (với mọi số nguyên n)

Tồn tại 1 số chia hết cho 3 (vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp)

suy ra n(n+1)(n+2) chia hết cho 2,3

hay n^3+3n^2+2n chia hết cho 6

suy ra ĐPCM

3 tháng 2 2018

a, gọi d là ƯCLN(2n+1, 5n+2 )

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\5n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(2n+1\right)⋮d\\2\left(5n+2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}10n+5⋮d\\10+4⋮d\end{cases}}\)

\(\Rightarrow\left(10+5\right)-\left(10+4\right)⋮d\)

\(\Rightarrow10+5-10-4⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\left\{-1;1\right\}\)

vậy...............

9 tháng 2 2018

Còn phần b và phần c thì sao???

19 tháng 2 2016

Đặt A = 3n - 2 / n + 1

A là số nguyên

<=> 3n - 2 chia hết cho n + 1

<=> 3n + 3 - 5 chia hết cho n + 1

<=> 3.(n + 1) - 5 chia hết cho n + 1

<=> 5 chia hết cho n + 1

<=> n + 1 thuộc Ư(5) = {-5; -1; 1; 5}

<=> n thuộc {-6; -2; 0; 4}.

15 tháng 11 2015

d=(2n+5;3n+7)

=> 3(2n+5) - 2(3n+7) = 6n +15 - 6n -14 =1 chia hết cho d

=> d =1 

Vậy 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

15 tháng 11 2015

Gọi ƯCLN ( 2n + 5 ; 3n + 7 ) là d. Ta có:

2n + 5 chia hết cho d => 3(2n + 5) = 6n + 15 chia hết cho d.

3n + 7 chia hết cho d => 2(3n + 7) = 6n + 14 chia hết cho d.

=> ( 6n + 15 ) - ( 6n + 14 ) chia hết cho d.

=> 1 chia hết cho d

=> d = 1

Vây 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau=>> ĐPCM

16 tháng 11 2015

bài 2)

ta có 

= 2015 +2015^2+2015^3+2015^4+2015^5+2015^6 

= (2015 +2015^2)+(2015^3+2015^4)+(2015^5+2015^6)

= (2015.1+2015.2015)+ ... +(2015^5.1+2015^5.2015)

= 2015.2016+...+2015^5.2016

= 2016.(2015+2015^3+2015^5) chia hết cho 2016

=> (2015 +2015^2+2015^3+2015^4+2015^5+2015^6) chia het cho 2016