Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M D G N
Xet tam giac ABC ta có
G la trong tâm (gt)
->BG la dương trung tuyến
mà BG cắt AC tai N (gt)
nên BN là đường trung tuyến
--> N la trung điểm AC
Xét tam giac ANG và tam giac NCD ta có
ND=NG (gt) ; goc ANG=goc CND (đối đỉnh) ; AN=NC ( N là trung điểm AC)
--< tam giac ANG=tam giac CND (c-g-c)
--> AG=CD ( 2 cạnh tương ứng)
ta có : G là trọng tâm tam giac ABC (gt)
-> AG=\(\frac{2}{3}AM\)-> \(\frac{AG}{2}=\frac{AM}{3}=\frac{AM-AG}{3-2}=\frac{MG}{1}\)
--> AG=2MG
ma AG -=CD 9cmt)
nên CD=2MG
Tam giác ABC có: G là giao điểm của trung tuyến AM và BN (gt)
=> G là trọng tâm tam giác ABC
=>GM = 1/2 GA (đ/lí 3 trung tuyến của tam giác) (1)
Có GM = MK (gt)
Mà GM + MK = GK
=> GM = MK = 1/2 GK (2)
Từ (1)(2) => GA = GK
b, Xét tam giác BMK và tam giác CMG
BM = CM (gt)
góc BMK = góc CMG (đối đỉnh)
MK = MG (gt)
=> tam giác BMK = tam giác CMG (c.g.c)
c, Xét tam giác ABM và tam giác QCM
MA = QM (gt)
góc AMB = góc QMC ( đối đỉnh)
MB = MC (gt)
=> tam giác ABM = tam giác QCM(c.g.c)
=> góc BAQ = góc CQA ( cặp góc tương ứng)
=> AB // QC ( vì góc BAQ và góc CQA là 2 góc so le trong (3)
Xét tam giác BAN và tam giác ICN
BN = NI (gt)
góc BNA = góc INC (đối đỉnh)
AN = CN (gt)
=> tam giác BAN = tam giác ICN (c.g.c)
=> góc BAN = góc ICN (cặp góc tương ứng)
=> AB // CI (vì góc BAN và góc ICN là 2 góc so le trong) (4)
Từ (3)(4) => Q, C, I thẳng hàng
A B C M G N D
a) Xét \(\Delta ABC\) vuông tại A có: \(BC^2=AB^2+AC^2\) (định lí Pytago)
\(\Rightarrow BC^2=225\Rightarrow BC=\sqrt{225}=15\left(cm\right)\)
Vậy \(BC=15cm\).
b) Xét \(\Delta ABC\) vuông tại A có AM là đường trung truyến
\(\Rightarrow AM=\frac{1}{2}BC\) (định lí)
\(\Rightarrow AM=\frac{1}{2}.15=7,5\)
Ta có: 2 đường trung truyến AM và BN cắt nhau tại G
\(\Rightarrow\)G là trọng tâm của \(\Delta ABC\)
\(\Rightarrow AG=\frac{2}{3}AM=\frac{2}{3}.7,5=5\left(cm\right)\)
Vậy \(AG=5cm\).
c) Xét \(\Delta ABN\) và \(\Delta CDN\) có:
BN = DN (gt)
\(\widehat{ANB}=\widehat{CND}\) (2 góc đối đỉnh)
AN = CN (vì N là trung điểm của AC)
\(\Rightarrow\Delta ABN=\Delta CDN\left(c.g.c\right)\) (đpcm)
ta co :am=\(\frac{1}{2}\)ac(vi m la trung diem cua ac)
an=\(\frac{1}{2}\)ab(vi n la trung diem cua ab)
ma ab=ac suy ra am=an
b)xet tam giac ang va tam giac cnk co
an=bn
goc knb= goc ang
kn=ng
suy ra tam giac ang=tam giac cnk c,g,c
c)suy ra goc bkn=goc agn
ma s goc nay o vi tri so le trong
suy ra ag songsong kb
d)vi m la trung diem cua ac suy ra bm la trung diem cua ac suy ra bg=\(\frac{2}{3}\)gm
vi n la trung diem cua ab suy ra cn la trung diem cua ab
suy ra cg=\(\frac{2}{3}\)cn
ma gn=nk suy ra cg =gk
suy ra gb=kg
y cuoi dang suy nghi nha ban
`@` `\text {dnv}`
`a,`
Xét `\Delta AMB` và `\Delta AMC`:
`\text {AB = AC} (\Delta ABC \text {cân tại A})`
`\hat {B} = \hat {C} (\Delta ABC \text {cân tại A})`
`\text {MB = MC (vì AM là đường trung tuyến)`
`=> \Delta AMB = \Delta AMC (c-g-c)`
`b,`
\(\text{Vì AM}\text{ }\cap\text{BN tại G}\)
\(\text{AM, BN đều là đường trung tuyến}\)
`->`\(\text{G là trọng tâm của }\Delta\text{ABC}\)
`@` Theo tính chất của trọng tâm trong tam giác
`->`\(\text{BG = }\dfrac{2}{3}\text{BN}\)
Mà `\text {BN = 15 cm}`
`->`\(\text{BG = }\dfrac{2}{3}\cdot15=\dfrac{15}{3}=5\text{ }\left(\text{cm}\right)\)
Vậy, độ dài của \(\text{BG là 5 cm}\).
`c,` Bạn xem lại đề!