K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABD và ΔEBD có

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay DE\(\perp\)BC(Đpcm)

b) Ta có: ΔBAD=ΔBED(cmt)

nên AD=ED(hai cạnh tương ứng)

Xét ΔADK vuông tại A và ΔEDC vuông tại E có

DA=DE(cmt)

\(\widehat{ADK}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔADK=ΔEDC(cạnh góc vuông-góc nhọn kề)

Suy ra: AK=EC(hai cạnh tương ứng)

c) Ta có: BA+AK=BK(A nằm giữa B và K)

BE+EC=BC(E nằm giữa B và C)

mà BA=BE(cmt)

và AK=EC(cmt)

nên BK=BC

Ta có: ΔADK=ΔEDC(cmt)

nên DK=DC(hai cạnh tương ứng)

Ta có: M là trung điểm của CK(cmt)

nên MK=MC

Ta có: BK=BC(cmt)

nên B nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DK=DC(cmt)

nên D nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(2)

Ta có: CM=KM(cmt)

nên M nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(3)

Từ (1), (2) và (3) suy ra B,D,M thẳng hàng(đpcm)

16 tháng 2 2021

.

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD và...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

24 tháng 12 2022

loading...  

a) Xét ∆ABE và ∆MBE có:

BE chung

góc ABE = góc MBE (BE là phân giác của góc ABC)

AB = BM

⇒∆ABE = ∆MBE (c-g-c)

⇒góc BAE = góc BME (hai góc tương ứng)

⇒ME vuông góc BC

b) Do ∆ABE = ∆MBE (cmt)

⇒AE = ME (hai cạnh tương ứng)

Xét hai tam giác vuông: ∆AEK và ∆MEC có:

AE = ME (cmt)

góc AEK = góc MEC (đối đỉnh)

⇒∆AEK = ∆MEC (cạnh góc vuông - góc nhọn kề)

⇒EK = EC (hai cạnh tương ứng)

AK = MC (hai cạnh tương ứng)

Lại có: BK = BA + AK

BC = BM + MC

⇒BK = BC

c) Gọi H là giao điểm của BE và CK

Xét ∆BHK và ∆BHC có:

BK = BC (cmt)

góc HBK = góc HBC (do BE là tia phân giác của góc ABC)

BH chung

⇒∆BHK = ∆BHC (c-g-c)

⇒góc BHK = góc BHC (hai góc tương ứng)

Mà góc BHK + góc BHC = 180⁰ (kề bù)

⇒góc BHK = góc BHC = 180⁰ : 2 = 90⁰

⇒BH vuông góc KC

Hay BE vuông góc KC

a) Xét ΔABE và ΔMBE có:

BE chung

AB = MB (gt)

AE = EM (E là trung điểm của AM)

Suy ra ΔABE = ΔMBE (ccc)

b) Xét Δ ABK và Δ MBK có:

AB = BM (gt)

góc ABK =  góc MBK (ΔABE = ΔMBE)

BK chung

Suy ra ΔABK = ΔMBK (cgc)

Suy ra góc BAK = góc BMK

Mà góc BAK = 90 độ ( ΔABC vuông tại A)

Suy ra góc BMK = 90 độ

Suy ra KM ⊥ BC (đng)

a: Xét ΔABE và ΔMBE co

BA=BM

EA=EM

BE chung

=>ΔABE=ΔMBE

b: Xet ΔBAK và ΔBMK có

BA=BM

góc ABK=góc MBK

BK chung

=>ΔBAK=ΔBMK

=>góc BMK=90 độ

=>KM vuông góc BC

c: Xét tứ giác MFKQ có

MF//KQ

MF=KQ

=>MFKQ là hình bình hành

=>MQ//KF

=>góc CMQ=góc CBK=góc ABK

Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90Chứng minh HK // AB và KB = AH.Chứng minh ΔMAC cân.Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.Chứng minh rằng ΔAHB = ΔAHC.Gọi I là trung điểm...
Đọc tiếp

Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.
a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90
Chứng minh HK // AB và KB = AH.
Chứng minh ΔMAC cân.
Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.
Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
Chứng minh rằng ΔAHB = ΔAHC.
Gọi I là trung điểm của cạnh AH. Trên tia đối của tia IB, lấy điểm D sao cho IB = ID. Chứng minh IB = IC, từ đó suy ra AH + BD > AB + AC.
Trên cạnh CI, lấy điểm E sao cho CE 23 CI. Chứng minh ba điểm D, E, H thẳng hàn

Bài 5: Cho ΔABC cân tại A, A= 90. vẽ AH vuông góc với BC tại H.
a) Chứng minh: ΔABH = ΔACH
b) Cho biết AH = 4cm; BH = 3cm. Tính độ dài cạnh AB. 
c) Qua H, vẽ đường thẳng song song với AC cắt cạnh AB tại M. Gọi G là giao điểm của CM và AH. Chứng minh G là trọng tâm của ΔABC và tính độ dài cạnh AG.

(Vẽ hình giúp mk với nha mk cần gấp ạ)

0
6 tháng 12 2016

đợi mình 5 phút

6 tháng 12 2016

                                                                                  Giải

a) vì m la trung diểm của BC => BM=MC

Xét tam giac BAM va tam giac MAC có:

AB=AC(dề bài cho)

BM=MC(Chung minh tren)

AM la cạnh chung(de bai cho)

=>Tam giác BAM=tam giac MAC(c.c.c)

b)từ trên

=>góc BAM=góc MAC(hai goc tuong ung)

Tia AM nam giua goc BAC (1)

goc BAM=goc MAC(2)

từ (1) va (2)

=>AM la tia phan giac cua goc BAC

c)Còn nữa ......-->

3 tháng 5 2019

12 tháng 2 2022

 như cc

a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có 

BE chung

\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABE=ΔHBE(cạnh huyền-góc nhọn)

Suy ra: BA=BH(hai cạnh tương ứng) và EA=EH(hai cạnh tương ứng)

Xét ΔAEK vuông tại A và ΔHEC vuông tại H có 

EA=EH(cmt)

\(\widehat{AEK}=\widehat{HEC}\)(hai góc đối đỉnh)

Do đó: ΔAEK=ΔHEC(Cạnh góc vuông-góc nhọn kề)

Suy ra: EK=EC(hai cạnh tương ứng) và AK=HC(Hai cạnh tương ứng)

Ta có: BK=BA+AK

BC=BH+HC

mà BA=BH(cmt)

và AK=HC(cmt)

nên BK=BC

Ta có: BK=BC(cmt)

nên B nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: EK=EC(cmt)

nên E nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BE là đường trung trực của KC

hay BE\(\perp\)KC

b) Ta có: EA=EH(cmt)

mà EH<EC

nên EA<EC