Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a)<=>(n-1)+4 chia hết n-1
=>4 chia hết n-1
=>n-1\(\in\){-1,-2,-4;1,2,4}
=>n\(\in\){0,-1,-3,2,3,5}
b)<=>2(2n+1)+2 chia hết 2n+1
=>4 chia hết 2n+1
=>2n+1\(\in\){-1,-2,-4,1,2,4}
=>n\(\in\){-1;-3;-7;3;5;9}
bài 3 : <=>2y+8+xy+4x-1y-4=11
=>(8-4)+(2y-1y)+xy+4x=11
=>4+1y+x.y+x.4=11
=>1y+x.(x+y)=11-4
=>y+x.x+y=8
=>(x+y)^2=8
=>x+y=3
=>x và y là các số có tổng =3 ( bn tự liệt kê nhé )
\(n+3⋮2n+1\)
\(\Leftrightarrow2\left(n+3\right)⋮2n+1\)
\(\Leftrightarrow2n+6⋮2n+3\)
\(\Leftrightarrow\left(2n+3\right)+3⋮2n+3\)
Vì \(2n+3⋮2n+3\)
\(\Rightarrow6⋮2n+3\)
\(\Rightarrow2n+3\inƯ\left(6\right)=\){
gọi 2 số lẻ liên tiếp là 2K + 1 và 2K + 3
gọi d là ƯCLN( 2K+1;2K+3)
ta có ƯCLN(2k+1;2k+3)=d \(\Rightarrow\)2k+1 chia hết cho d 2k + 3 chia hết cho d
suy ra 2k+3 - 2k - 1 = 2 chia hết cho d
mà số lẻ ko chia hết cho 2
suy ra d = 1
vậy 2 số lẻ liên thiếp là 2 số nguyên tố cùng nhau
có UCLN = 2 nên a và b cùng là số chẵn
giả sử a = 2x và b = 2y
ta có a.b = 2x.2y = 4x.y = 252
=> x.y = 252:4
=> x.y = 62
=> x và y là ước của 62
mặt khác x và y phải là hai số nguyên tố cùng nhau
Ư(62) = {2.31}
Nếu x = 2 thì y = 31 lúc đó a = 4 và b = 62
Nếu x = 31 thì y = 2 lúc đó a = 62 và b =4
Theo bài ra , ta có :
a > 2 : b > 2
=) a + b > 2 + 2
mà a . b > 2 . 2
mà 2 + 2 = 2 .2
ko thỏa mãn
Lấy a + b > 3 + 3 = 6
a . b > 3 . 3 = 9
=) 6 < 9
=) a + b < a . b