K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 11:

Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=5\\x_1x_2=\dfrac{c}{a}=4\end{matrix}\right.\)

\(y_1+y_2=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{5}{4}\)

\(y_1\cdot y_2=\dfrac{1}{x_1}\cdot\dfrac{1}{x_2}=\dfrac{1}{x_1x_2}=\dfrac{1}{4}\)

Phương trình lập được sẽ là \(A^2-\dfrac{5}{4}A+\dfrac{1}{4}=0\)

Bài 10:

a: \(x_1+x_2=7+12=19;x_1x_2=7\cdot12=84\)

Phương trình lập được sẽ là \(x^2-19x+84=0\)

b: \(x_1+x_2=-2+5=3;x_1x_2=-2\cdot5=-10\)

Phương trình lập được sẽ là \(x^2-3x-10=0\)

c: \(x_1+x_2=-3+\left(-4\right)=-7;x_1x_2=\left(-3\right)\cdot\left(-4\right)=12\)

Phương trình lập được sẽ là \(x^2+7x+12=0\)

NV
9 tháng 9 2021

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{5}{3}\\x_1x_2=-2\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}y_1+y_2=2x_1-x_2+2x_2-x_1\\y_1y_2=\left(2x_1-x_2\right)\left(2x_2-x_1\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1+x_2\\y_1y_2=-2x_1^2-2x_2^2+5x_1x_2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-\dfrac{5}{3}\\y_1y_2=-2\left(x_1+x_2\right)^2+9x_1x_2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-\dfrac{5}{3}\\y_1y_2=-2.\left(-\dfrac{5}{3}\right)^2+9.\left(-2\right)=-\dfrac{212}{9}\end{matrix}\right.\)

\(\Rightarrow y_1;y_2\) là nghiệm của:

\(y^2+\dfrac{5}{3}y-\dfrac{212}{9}=0\Leftrightarrow9y^2+10y-212=0\)

a: x1+x2=-2; x1x2=-4

x1+x2+2+2=-2+2+2=2

(x1+2)(x2+2)=x1x2+2(x1+x2)+4

=-4+2*(-2)+4=-4

Phương trình cần tìm là x^2-2x-4=0

b: \(\dfrac{1}{x_1+1}+\dfrac{1}{x_2+1}=\dfrac{x_1+x_2+2}{\left(x_1+1\right)\left(x_2+1\right)}\)

\(=\dfrac{x_1+x_2+2}{x_1x_2+\left(x_1+x_2\right)+1}\)

\(=\dfrac{-2+2}{-4+\left(-2\right)+1}=0\)

\(\dfrac{1}{x_1+1}\cdot\dfrac{1}{x_2+1}=\dfrac{1}{x_1x_2+x_1+x_2+1}=\dfrac{1}{-4-2+1}=\dfrac{-1}{5}\)

Phương trình cần tìm sẽ là; x^2-1/5=0

c: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{x_1^2+x_2^2}{x_1x_2}=\dfrac{\left(-2\right)^2-2\cdot\left(-4\right)}{-4}=\dfrac{4+8}{-4}=-3\)

x1/x2*x2/x1=1

Phương trình cần tìm sẽ là:

x^2+3x+1=0

 

30 tháng 5 2021

\(x^2-2x-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}u=x_1+\left(x_2\right)^2\\v=x_2+\left(x_1\right)^2\end{matrix}\right.\)

\(\Rightarrow\)\(\left\{{}\begin{matrix}u+v=\left(x_1+x_2\right)+\left(x_2+x_1\right)^2-2x_1x_2\\uv=2x_1x_2+x_1^3+x_2^3=2x_1x_2+\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u+v=8\\uv=12\end{matrix}\right.\)

=>u và v là nghiệm của pt \(t^2-8t+12=0\)

a) Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-m\right)\)

\(=\left(2m-2\right)^2+4m\)

\(=4m^2-8m+4+4m\)

\(=4m^2-4m+4\)

\(=4m^2-4m+1+3\)

\(=\left(2m-1\right)^2+3>0\forall x\)

Do đó: Phương trình luôn có hai nghiệm x1,x2 với mọi m(Đpcm)

b) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1\cdot x_2=-m\end{matrix}\right.\)

Ta có: \(y_1+y_2=x_1+\dfrac{1}{x_2}+x_2+\dfrac{1}{x_1}\)

\(=\left(x_1+x_2\right)+\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)\)

\(=\left(2m-2\right)+\dfrac{2m-2}{-m}\)

\(=2m-2-\dfrac{2m-2}{m}\)

\(=\dfrac{2m^2-2m-2m+2}{m}\)

\(=\dfrac{2m^2-4m+2}{m}\)

\(=\dfrac{2\left(m^2-2m+1\right)}{m}\)

\(=\dfrac{2\left(m-1\right)^2}{m}\)

Ta có: \(y_1y_2=\left(x_1+\dfrac{1}{x_2}\right)\left(x_2+\dfrac{1}{x_1}\right)\)

\(=x_1x_2+2+\dfrac{1}{x_1x_2}\)

\(=-m+2+\dfrac{1}{-m}\)

\(=-m+2-\dfrac{1}{m}\)

\(=\dfrac{-m^2}{m}+\dfrac{2m}{m}-\dfrac{1}{m}\)

\(=\dfrac{-m^2+2m-1}{m}\)

\(=\dfrac{-\left(m-1\right)^2}{m}\)

Phương trình đó sẽ là:

\(x^2-\dfrac{2\left(m-1\right)^2}{m}x-\dfrac{\left(m-1\right)^2}{m}=0\)

24 tháng 12 2017

Giả sử  x 1 x 2  la hai nghiệm của phương trình  x 2 + px + q = 0

Theo hệ thức Vi-ét ta có:  x 1 +  x 2  = - p/1 = - p;  x 1 x 2  = q/1 = q

Phương trình có hai nghiệm là  x 1  +  x 2  và  x 1 x 2  tức là phương trình có hai nghiệm là –p và q.

Hai số -p và q là nghiệm của phương trình.

(x + p)(x - q) = 0 ⇔  x 2  - qx + px - pq = 0 ⇔  x 2  + (p - q)x - pq = 0

Phương trình cần tìm:  x 2  + (p - q)x - pq = 0

NV
26 tháng 3 2022

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{5}{3}\\x_1x_2=-2\end{matrix}\right.\)

\(\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}\)

\(=\dfrac{x_1^2+x_2^2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{\left(-\dfrac{5}{3}\right)^2-2.\left(-2\right)-\left(-\dfrac{5}{3}\right)}{-2-\left(-\dfrac{5}{3}\right)+1}=...\)

NV
15 tháng 1

Theo hệ thức Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5}{2}\\x_1x_2=\dfrac{1}{2}\end{matrix}\right.\)

Giả sử pt bậc 2 cần tìm có các nghiệm:

\(\left\{{}\begin{matrix}x_3=\dfrac{x_1}{x_2+1}\\x_4=\dfrac{x_2}{x_1+1}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_3+x_4=\dfrac{x_1}{x_2+1}+\dfrac{x_2}{x_1+1}\\x_3x_4=\left(\dfrac{x_1}{x_2+1}\right)\left(\dfrac{x_2}{x_1+1}\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_3+x_4=\dfrac{x_1^2+x_2^2+x_1+x_2}{x_1x_2+x_1+x_2+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2+x_1+x_2}{x_1x_2+x_1+x_2+1}\\x_3x_4=\dfrac{x_1x_2}{x_1x_2+x_1+x_2+1}\end{matrix}\right.\)

Thay số:

\(\Rightarrow\left\{{}\begin{matrix}x_3+x_4=\dfrac{31}{16}\\x_3x_4=\dfrac{1}{8}\end{matrix}\right.\)

Theo định lý Viet đảo, \(x_3;x_4\) là nghiệm của:

\(x^2-\dfrac{31}{16}x+\dfrac{1}{8}=0\Leftrightarrow16x^2-31x+2=0\)

AH
Akai Haruma
Giáo viên
15 tháng 1

Lời giải:

Theo định lý Viet: $x_1+x_2=\frac{5}{2}=2,5; x_1x_2=\frac{1}{2}=0,5$

Khi đó:

\(\frac{x_1}{x_2+1}.\frac{x_2}{x_1+1}=\frac{x_1x_2}{(x_2+1)(x_1+1)}=\frac{x_1x_2}{x_1x_2+(x_1+x_2)+1}=\frac{0,5}{0,5+2,5+1}=\frac{1}{8}\)

\(\frac{x_1}{x_2+1}+\frac{x_2}{x_1+1}=\frac{x_1^2+x_1+x_2^2+x_2}{(x_1+1)(x_2+1)}=\frac{(x_1+x_2)^2-2x_1x_2+(x_1+x_2)}{x_1x_2+(x_1+x_2)+1}\)

\(=\frac{2,5^2-2.0,5+2,5}{0,5+2,5+1}=\frac{31}{16}\)

Khi đó áp dụng định lý Viet đảo thì $\frac{x_1}{x_2+1}$ và $\frac{x_2}{x_1+1}$ là nghiệm của pt:

$x^2-\frac{31}{16}x+\frac{1}{8}=0$

13 tháng 1 2023

`1)` Ptr có: `\Delta=3^2-4.5.(-1)=29 > 0 =>`Ptr có `2` nghiệm phân biệt

 `=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=-3/5),(x_1.x_2=c/a=-1/5):}`

Có: `A=(3x_1+2x_2)(3x_2+x_1)`

     `A=9x_1x_2+3x_1 ^2+6x_2 ^2+2x_1x_2`

    `A=8x_1x_2+3(x_1+x_2)^2=8.(-1/5)+3.(-3/5)^2=-13/25`

Vậy `A=-13/25`

____________________________________________________

`2)` Ptr có: `\Delta'=(-1)^2-7.(-3)=22 > 0=>` Ptr có `2` nghiệm pb

 `=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2/7),(x_1.x_2=c/a=-3/7):}`

Có: `M=[7x_1 ^2-2x_1]/3+3/[7x_2 ^2-2x_2]`

     `M=[(7x_1 ^2-2x_1)(7x_2 ^2-2x_2)+9]/[3(7x_2 ^2-2x_2)]`

    `M=[49(x_1x_2)^2-14x_1 ^2 x_2-14x_1 x_2 ^2+4x_1x_2+9]/[3(7x_2 ^2-2x_2)]`

   `M=[49.(-3/7)^2-14.(-3/7)(2/7)+4.(-3/7)+9]/[3x_2(7x_2-2)]`

   `M=6/[x_2(7x_2-2)]`   `(1)`

Có: `x_1+x_2=2/7=>x_1=2/7-x_2`

 Thay vào `x_1.x_2=-3/7 =>(2/7-x_2)x_2=-3/7`

      `<=>-x_2 ^2+2/7 x_2+3/7=0<=>x_2=[1+-\sqrt{22}]/7`

`@x_2=[1+\sqrt{22}]/7=>M=6/[[1+\sqrt{22}]/7(7 .[1+\sqrt{22}]/2-2)]=2`

`@x_2=[1-\sqrt{22}]/7=>M=6/[[1-\sqrt{22}]/7(7 .[1-\sqrt{22}]/2-2)]=2`

Vậy `M=2`