Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giả sử A'=(x'; y'). Khi đó \(T_{\overrightarrow{v}}\left(A\right)=A'\Leftrightarrow\left\{{}\begin{matrix}x'=3-1=2\\y'=5+2=7\end{matrix}\right.\)
Do đó: A' = (2;7)
Tương tự B' =(-2;3)
b) Ta có: \(A=T_{\overrightarrow{v}}\left(C\right)\Leftrightarrow C=^T\overrightarrow{-v}\left(A\right)=\left(4;3\right)\)
c) Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến
Gọi M(x;y), M' = \(^T\overrightarrow{v}\) =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy \(^T\overrightarrow{v}\) (d) = d'.
Cách 2. Dùng tính chất của phép tịnh tiến
Gọi \(^T\overrightarrow{v}\)(d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó \(^T\overrightarrow{v}\) (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8.
a) Giả sử A'=(x'; y'). Khi đó
(A) = A' ⇔
Do đó: A' = (2;7)
Tương tự B' =(-2;3)
b) Ta có A = (C) ⇔ C= (A) = (4;3)
c)Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến
Gọi M(x;y), M' = =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy (d) = d'
Cách 2. Dùng tính chất của phép tịnh tiến
Gọi (d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8
Phương trình dạng tổng quát của \(d_1\): \(x+3y-7=0\)
Phương trình dạng tổng quát của \(d_2\): \(x-3y+2=0\)
a/ Gọi M là 1 điểm bất kì thuộc \(d_1\Rightarrow x_M+3y_M-7=0\) (1)
Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{a}\Rightarrow\left\{{}\begin{matrix}x_M=x_{M'}-1\\y_M=y_{M'}-1\end{matrix}\right.\)
Thay vào (1): \(x_{M'}-1+3\left(y_{M'}-1\right)-7=0\)
\(\Leftrightarrow x_{M'}+3y_{M'}-11=0\)
Vậy ảnh của \(d_1\) có pt: \(x+3y-11=0\)
Gọi \(M_2\) là 1 điểm bất kì thuộc \(d_2\Rightarrow x_{M_2}-3y_{M_2}+2=0\)
Gọi M'' là ảnh của \(M_2\) qua phép tịnh tiến \(\overrightarrow{a}\) \(\Rightarrow\left\{{}\begin{matrix}x_{M2}=x_{M''}-1\\y_{M2}=y_{M''}-1\end{matrix}\right.\)
\(\Rightarrow x_{M''}-1-3\left(y_{M''}-1\right)+2=0\Leftrightarrow x_{M''}-3y_{M''}+4=0\)
Ảnh của d2 là: \(x-3y+4=0\)
b/ \(\Rightarrow I\left(5;-6\right)\)
Gọi M là 1 điểm bất kì thuộc d \(\Rightarrow4x_M-2y_M+3=0\) (1)
Gọi M' là ảnh của M qua phép đối xứng tâm I
\(\Rightarrow\left\{{}\begin{matrix}x_M=10-x_{M'}\\y_M=-12-y_{M'}\end{matrix}\right.\)
Thế vào (1): \(4\left(10-x_{M'}\right)-2\left(-12-y_{M'}\right)+3=0\)
\(\Rightarrow4x_{M'}-2y_{M'}-67=0\)
Hay ảnh của d qua phép đối xứng tâm I có pt: \(4x-2y+67=0\)
- Tương tự, gọi \(M_1\) là 1 điểm bất kì thuộc \(d_1\Rightarrow x_{M1}+3y_{M1}-7=0\)
\(M_1'\) là ảnh của M qua phép đối xứng tâm I \(\Rightarrow\left\{{}\begin{matrix}x_{M1}=10-x_{M_1'}\\y_{M1}=-12-y_{M_1'}\end{matrix}\right.\)
\(\Rightarrow10-x_{M_1'}+3\left(-12-y_{M_1'}\right)-7=0\)
\(\Leftrightarrow x_{M_1'}+3y_{M_1'}+33=0\)
Ảnh của d1 là: \(x+3y+33=0\)
Ảnh của d2 bạn tự làm nốt tương tự
Gọi A' và d' theo thứ tự là ảnh của A và d qua phép biến hình trên
a) A' = (-1+2; 2+1) = (1;3), d // d', nên d có phương trình : 3x +y + C = 0. Vì A thuộc d, nên A' thuộc d', do đó 3.1 +3 + C = 0. Suy ra C=-6. Do đó phương trình của d' là 3x+y-6=0
b) A (-1;2) và B(0;-1) thuộc d. Ảnh của A và B qua phép đối xứng qua trục Oy tương ứng là A'(1;2) và B'(0;-1). Vậy d' là đường thẳng A'B' có phương trình :
=
hay 3x - y - 1 =0
c) A'=( 1;-2) , d' có phương trình 3x + y -1 =0
d) Qua phép quay tâm O góc , A biến thành A'( -2; -1), B biến thành B'(1;0). Vậy d' là đường thẳng A'B' có phương trình
=
hay x - 3y + 1 = 0
Gọi A' và d' theo thứ tự là ảnh của A và d qua phép biến hình trên
a) A' = (-1+2; 2+1) = (1;3), d // d', nên d có phương trình : 3x +y + C = 0. Vì A thuộc d, nên A' thuộc d', do đó 3.1 +3 + C = 0. Suy ra C=-6. Do đó phương trình của d' là 3x+y-6=0
b) A (-1;2) và B(0;-1) thuộc d. Ảnh của A và B qua phép đối xứng qua trục Oy tương ứng là A'(1;2) và B'(0;-1). Vậy d' là đường thẳng A'B' có phương trình :
=
hay 3x - y - 1 =0
c) A'=( 1;-2) , d' có phương trình 3x + y -1 =0
d) Qua phép quay tâm O góc , A biến thành A'( -2; -1), B biến thành B'(1;0). Vậy d' là đường thẳng A'B' có phương trình
=
hay x - 3y + 1 = 0
Lấy điểm M bao nhiêu cũng được nhưng với điều kiện thay vào pt d phải thỏa mãn
Ví dụ bài này lấy M(0;1) thay vào d: 3.0+5.1+3=0 (sai)
Nên lấy như vậy giải kết quả cũng sẽ sai
Chắc pt d là \(3x+5y+3=0\) ?
Gọi \(\overrightarrow{v}=\left(a;b\right)\Rightarrow a^2+b^2=2\) (1)
Gọi \(M\left(-1;0\right)\) là 1 điểm thuộc d
Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)
\(\left\{{}\begin{matrix}x_{M'}=-1+a\\y_{M'}=b\end{matrix}\right.\) thay vào pt (d') ta được:
\(3\left(-1+a\right)+5b-5=0\)
\(\Leftrightarrow b=\frac{8-3a}{5}\)
Thế vào (1): \(a^2+\left(\frac{8-3a}{5}\right)^2=2\)
\(\Leftrightarrow34a^2-48a+14=0\Rightarrow\left[{}\begin{matrix}a=1\Rightarrow b=1\\a=\frac{7}{17}\Rightarrow b=\frac{23}{17}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}\overrightarrow{v}=\left(1;1\right)\\\overrightarrow{v}=\left(\frac{7}{17};\frac{23}{17}\right)\end{matrix}\right.\)
Đường thẳng d nhận \(\left(1;2\right)\) là 1 vtcp
Phép tịnh trên theo \(\overrightarrow{v}\) biến d thành chính nó khi và chỉ khi \(\overrightarrow{v}\) cùng phương vecto chỉ phương của d
\(\Leftrightarrow\frac{a+1}{1}=\frac{3a-4}{2}\Leftrightarrow a=6\)
1.
Lấy \(M\left(1;-1\right)\) là 1 điểm thuộc \(\Delta\)
Gọi \(M'\left(x';y'\right)\) là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in\Delta'\)
\(\left\{{}\begin{matrix}x'=1+1=2\\y'=-1+a\end{matrix}\right.\) \(\Leftrightarrow M'\left(2;-1+a\right)\)
Do M' thuộc \(\Delta'\) nên:
\(2+2\left(-1+a\right)-1=0\Rightarrow a=\dfrac{1}{2}\)
\(\Rightarrow\overrightarrow{v}=\left(1;\dfrac{1}{2}\right)\)
2. Xem lại đề bài, chỉ có \(d_1;d_2\) và không thấy d đâu hết
\(d\) là \(d_1\), \(d_1\)là \(d_2\)