Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 1-2-3+4+5-6-7+...+1997-1998-1999+2000+2001
=(1-2-3)+[4+(5-6-7)]+[8+(9-10-11)]+...+[1996+(1997-1998-1999)]+(2000+2001)
Từ 4 đến 1999 có số số hạng là: (1999-4):1+1=1996(số hạng)
= -4 + [4+(-8)] + [8+(-12)] + [12+(-16)] + ... + [1996+(-2000] + 4001
= -4 + (-4) + (-4) + (-4) + ... + (-4) + 4001
= -4 + (-4).(1996:4) + 4001
= -4 + (-4).499 + 4001
= -4.500 + 4001
= -2000 + 4001
= 2001
Nhớ k
Sửa đề chút : Tính nhanh 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ... + 1997 - 1998 - 1999 + 2000 + 2001
1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ... + 1997 - 1998 - 1999 + 2000 + 2001
= ( 1 - 2 - 3 + 4 ) + ( 5 - 6 - 7 + 8 ) + ... + ( 1997 - 1998 - 1999 + 2000 ) + 2001
= 0 + 0 + ... + 0 + 2001
= 2001
a) \(A=1+\left(-3\right)+5+\left(-7\right)+...+\left(-1999\right)+2001\)
Số số hạng của tổng trên là: \(\frac{2001-1}{2}+1=1001\).
\(A=\left[1+\left(-3\right)\right]+\left[5+\left(-7\right)\right]+...+\left[1997+\left(-1999\right)\right]+2001\)
\(A=-2.500+2001\)
\(A=1001\)
b) \(1+\left(-2\right)+\left(-3\right)+4+5+\left(-6\right)+\left(-7\right)+8+...+1997+\left(-1998\right)+\left(-1999\right)+2000\)
\(=\left\{\left[1+\left(-2\right)\right]+\left[\left(-3\right)+4\right]\right\}+...+\left\{\left[1997+\left(-1998\right)\right]+\left[\left(-1999\right)+2000\right]\right\}\)
\(=\left(-1+1\right)+\left(-1+1\right)+...+\left(-1+1\right)\)
\(=0+0+...+0=0\)
\(\text{Ta có : E= 1-2-3+4+5-6-7+..........+1997-1998-1999+2000+2001}\)
\(=\left(1-2-3+4\right)+\left(5-6-7+8\right)+....\) \(+\left(1997-1998-1999+2000\right)+2001\)
\(=0+0+......+0+2001\)
\(=2001\)
\(E=1-2-3+4+5-6-7+...+1997-1998-1999+2000+2001\)
\(E=\left(1-2-3+4\right)+\left(5-6-7+8\right)+...+\left(1997-1998-1999+2000\right)+2001\)
\(E=0+0+...+0+2001\)
\(E=2001\)
k nha
\(\frac{x+1}{2001}+\frac{x+2}{200}=\frac{x+3}{1999}+\frac{x+4}{1998}\)
\(\left(\frac{x+1}{2001}+1\right)+\left(\frac{x+2}{2000}+1\right)=\left(\frac{x+3}{1999}+1\right)+\left(\frac{x+4}{1998}+1\right)\)
\(\frac{x+2002}{2001}+\frac{x+2002}{2000}=\frac{x+2002}{1999}+\frac{x+2002}{1998}\)
\(\frac{x+2002}{2001}+\frac{x+2002}{2000}-\frac{x+2002}{1999}-\frac{x+2002}{1998}=0\)
\(\left(x+2002\right).\left(\frac{1}{2001}+\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
\(\Rightarrow x+2002=0\)
\(\Rightarrow x=0-2002\)
\(\Rightarrow x=-2002\)
Sửa lại :
\(=\frac{1999.2000+1999-1}{1998+1999.2000}.\frac{7}{5}=\frac{1999.2000+1998}{1998+1999.2000}.\frac{7}{5}=1.\frac{7}{5}=\frac{7}{5}\)
\(\frac{1999.2000-1}{1998+1999.2000}.\frac{7}{5}\)
= \(\frac{-1}{1998}\) . \(\frac{7}{5}\)
= \(\frac{-7}{9990}\)