Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3: Gọi số bị chia ban đầu là \(\overline{aaa}\), => số bị chia mới là \(\overline{aa}\),
Số chia ban đầu là \(\overline{bbb}\), => số chia mới \(\overline{bb}\),
Số dư của phép chia ban đầu là r, => số dư của phép chia mới là (r-100)
Theo đề ra, ta có:
\(\overline{aaa} = 2\;.\;\overline{bbb} + r \) (1)
\(\overline{aa} = 2\;.\;\overline{bb} + r - 100 \) (2)
Lấy (1) trừ (2) ta có: \(a*100 = b*200 +100\) => \(a = b*2 + 1\)
Ta thấy \(b*2+1\) là số lẻ => \(a=\left\{1;3;5;7;9\right\}\)
Xét các trường hợp:
- a = 1 thì b = (1-1)/2 = 0 (loại do b=0 thì số chia là 0, Không tồn tại phép chia)
- a = 3 thì b = (3-1)/2 = 1 (loại vì 333 chia hết cho 111)
- a = 5 thì b = (5-1)/2 = 2 (chọn)
- a = 7 thì b = (7-1)/2 = 3 (chon)
- a = 9 thì b = (9-1)/2 = 4 (chọn)
Vậy ta có các cặp số bị chia, số chia {\(\overline{aaa}\), \(\overline{bbb}\)} thỏa mãn đề bài là: {555; 222}, {777; 333}, {999; 444}
Bài 2: Gọi số phải tìm là \(\overline{abc}\) (a, b, c ϵ N, a > 0)
Theo đề bài ta có:
\(\overline{3abc} = 25*\overline{abc}\)
\(\Leftrightarrow 3000 +\overline{abc} = 25*\overline{abc}\)
\(\Leftrightarrow 25*\overline{abc} - \overline{abc} =3000\)
\(\Leftrightarrow 24*\overline{abc} =3000\)
\(\Leftrightarrow \overline{abc} =3000:24 = 125\)
1/ Số có dạng ab. Khi thêm số 2 vào bên phải => số có dạng 2ab2
Theo bài ra ta có: 2ab2=36.ab
<=> 2000+10.ab+2=36.ab
<=> 26.ab=2002 => ab=2002:26
=> ab=77
Số cần tìm là 77
2/ Do UCLN (a,b)=6 => a=6k, b=6q (k, q thuộc N* và k, q là 2 số nguyên tố cùng nhau
Mà a.b=216 => (6k).(6q)=216 => k.q=216:36 => k.q=6
=> k.q=1.6=6.1=2.3=3.2
+/ k=1; q=6 => a=6; b=36
+/ k=6; q=1 => a=36; b=6
+/ k=2, q=3 => a=12; b=18
+/ k=3; q=2 => a=18; b=12