\(\frac{5x^3-2x^2+2,5x-2,6}{x^2+3x-2,7}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2020

Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)

\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)

\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)

\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)

Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình

10 tháng 8 2016

a) Điều kiện xác định của pt : 

\(\begin{cases}x^2+5x+4\ge0\\x^2+5x+2\ge0\end{cases}\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x\le-4\\x\ge-1\end{array}\right.\)

Ta có : \(x^2+5x-\sqrt{x^2+5x+4}=-2\)

\(\Leftrightarrow\left(x^2+5x+4\right)-\sqrt{x^2+5x+4}-2=0\)(1)

Đặt \(t=\sqrt{x^2+5x+4},t\ge0\)

\(pt\left(1\right)\Leftrightarrow t^2-t-2=0\Leftrightarrow\left(t+1\right)\left(t-2\right)=0\Leftrightarrow\left[\begin{array}{nghiempt}t=-1\left(\text{loại}\right)\\t=2\left(\text{nhận}\right)\end{array}\right.\)

Với t = 2 ta có pt : \(x^2+5x+4=4\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\left[\begin{array}{nghiempt}x=0\left(\text{nhận}\right)\\x=-5\left(\text{nhận}\right)\end{array}\right.\)

Vậy tập nghiệm của pt : \(S=\left\{-5;0\right\}\)

b) Điều kiện xác định của pt : 

\(\begin{cases}x^2-3x+2\ge0\\x+3\ge0\\x-2\ge0\\x^2+2x-3\ge0\end{cases}\)  \(\Leftrightarrow x\ge2\)

Ta có ; \(\sqrt{x^2-3x+2}+\sqrt{x+03}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}-\sqrt{x-3}\right)-\left(\sqrt{x-2}-\sqrt{x-3}\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x-3}\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x-3}=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\left(\text{nhận}\right)\\-2=-3\left(\text{vô lí - loại}\right)\end{array}\right.\)

Vậy pt có nghiệm x = 2

 

11 tháng 8 2016

bạn ơi bài 2 bạn lm đc chưa

AH
Akai Haruma
Giáo viên
2 tháng 3 2020

Lời giải:
a)

\(\left\{\begin{matrix} x\geq 0\\ 3-\sqrt{x}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\leq 9\end{matrix}\right.\Leftrightarrow 0\leq x\leq 9\)

b)

\(\left\{\begin{matrix} x-1\geq 0\\ 2-\sqrt{x-1}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x-1\leq 4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\leq 5\end{matrix}\right.\)

\(\Leftrightarrow 1\leq x\leq 5\)

c)

\(-7+3x>0\Leftrightarrow x>\frac{7}{3}\)

d)

\(\left\{\begin{matrix} x-1\geq 0\\ 5-x>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x< 5\end{matrix}\right.\Leftrightarrow 1\leq x< 5\)

e) \(x\in\mathbb{R}\)

f) \(\left\{\begin{matrix} 2-x>0\\ x-5\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x< 2\\ x\geq 5\end{matrix}\right.\) (vô lý)

Do đó không tồn tại $x$ để hàm số tồn tại

g)

\(\left[\begin{matrix} \left\{\begin{matrix} 3x-6-2x\geq 0\\ 1-x>0\end{matrix}\right.\\ \left\{\begin{matrix} 3x-6-2x\leq 0\\ 1-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x\geq 6\\ x< 1\end{matrix}\right.(\text{vô lý})\\ \left\{\begin{matrix} x\leq 6\\ x>1 \end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow 1< x\leq 6\)

29 tháng 6 2018

1.\(\)Thay \(x\)=\(\sqrt{0,7}\)vào biểu thức ta được :

\(\dfrac{5\sqrt{0,7^3}-2\sqrt{0,7^2}+2,5\sqrt{0,7}-2,6}{\sqrt{0,7^2}+3\sqrt{0,7}-2,7}\)

=\(\dfrac{3,5\sqrt{0,7}-1,4+2,5\sqrt{0,7}-2,6}{0,7+3\sqrt{0,7}-2,7}\)

=\(\dfrac{6\sqrt{0,7}-4}{-2+3\sqrt{0,7}}\)

=2

29 tháng 6 2018

2.Thay \(x\)=\(-\sqrt{5}\)vào biểu thức. Thay như biểu thức trên nhé b

=\(\dfrac{50-25\left(-\sqrt{5}\right)+10-5\left(-\sqrt{5}\right)-30}{5+10\left(-\sqrt{5}\right)-15}\)

=\(\dfrac{30-30\left(-\sqrt{5}\right)}{-10+10\left(-\sqrt{5}\right)}\)=\(-3\)