Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng Minh:C=\(3^0+3^2+3^4+...+3^{2002}⋮7\)
Nhân C với \(3^2\)ta có:
\(9S=3^2+3^4+3^6+...+3^{2004}\)
\(\Rightarrow9S-S=\left(3^2+3^4+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)
\(\Rightarrow8S=3^{2004}-1\)
\(\Rightarrow S=\dfrac{3^{2004}-1}{8}\)
Chứng minh:
Ta có:\(3^{2004}-1=\left(3^6\right)^{334-1}=\left(3^6-1\right).a=7.104.a\)
\(\)UCLN(7;8)=1
\(\Rightarrow S⋮7\)
Sửa lại 1 chút!
Chứng minh: C= \(3^0+3^2+3^4+3^6+...+3^{2002}\) chia hết cho 7
\(S=\dfrac{3}{5.7}+\dfrac{3}{7.9}+....+\dfrac{3}{59.61}\)
\(S=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+......+\dfrac{1}{59}-\dfrac{1}{61}\)
\(S=\left(\dfrac{1}{5}-\dfrac{1}{7}\right)+\left(\dfrac{1}{7}-\dfrac{1}{9}\right)+...+\left(\dfrac{1}{59}-\dfrac{1}{61}\right)\)
\(S=\dfrac{1}{5}-\dfrac{1}{61}\)
\(S=\dfrac{56}{305}\)
Vậy S = \(\dfrac{56}{305}\)
\(S=\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\)
\(S=\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
\(S=\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{61}\right)=\dfrac{3}{2}.\dfrac{56}{305}=\dfrac{84}{305}\)
để n thuộc z thì => 4 ⋮ 2n
=> 2n thuộc Ư(4) = {1;-1;2;-2;4;-4}
ta có bảng
2n | 1 | -1 | 2 | -2 | 4 | -4 |
n | 1/2(loại) | -1/2(loại) | 1 | -1 | 2 | -2 |
vậy n= 1; -1 ;2 ;-2
Mình làm gọn nhé ,mình không có thời gian nhiều
\(\frac{\left(-2\right)^3.3^3.5^3.7.8}{3.2^4.5^3.14}=\frac{-1.3^2.7.4}{7.2}=-18\)
câu kia đề bị sai rồi ,tính không ra
k câu đó mk ghi k sai đâu
hôm nay thầy giải cho mk oy
nhưng mà dù gì thì cx cảm ơn bn nhé!
Ta có : \(\overline{abcdeg}=\overline{ab}.1000+\overline{cd}.100+\overline{eg}\)
\(=9999.\overline{ab}+\overline{ab}+99.\overline{cd}+\overline{cd}+\overline{eg}\)
\(=\left(9999.\overline{ab}+99.\overline{cd}\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
Vì : \(9999.\overline{ab}+99.\overline{cd}⋮11\) và \(\overline{ab}+\overline{cd}+\overline{eg}⋮11\)
\(\Rightarrow\overline{abcdeg}⋮11\left(đpcm\right)\)
Ta có:
\(\overline{abcdeg}=\overline{ab}.10000+\overline{cd}.100+\overline{eg}\)
\(=\overline{ab}.9999+\overline{ab}+\overline{cd}.99+\overline{cd}+\overline{eg}\)
\(=\overline{ab}.11.909+\overline{cd}.11.9+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
\(=11\left(\overline{ab}.909+\overline{cd}.9\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
Vì \(11\left(\overline{ab}.909+\overline{cd}.9\right)⋮11\) và \(\overline{ab}+\overline{cd}+\overline{eg}⋮11\)
nên \(\overline{abcdeg}⋮11\)
Vậy nếu \(\overline{ab}+\overline{cd}+\overline{eg}⋮11\) thì \(\overline{abcdeg}⋮11\) (đpcm)
A =\(\dfrac{4}{2.5}+\dfrac{4}{5.8}+\dfrac{4}{8.11}+...+\dfrac{4}{65.68}\)
A = \(\dfrac{4}{3}.\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{65.68}\right)\)
A = \(\dfrac{4}{3}.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{65}-\dfrac{1}{68}\right)\)
A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-\left(\dfrac{1}{8}-\dfrac{1}{8}\right)-\left(\dfrac{1}{11}-\dfrac{1}{11}\right)-...-\left(\dfrac{1}{65}-\dfrac{1}{65}\right)-\dfrac{1}{68}\right]\)
A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-0-0-0-...-0-\dfrac{1}{68}\right]\)
A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-\dfrac{1}{68}\right]\)
A = \(\dfrac{4}{3}.\dfrac{33}{68}\)
A = \(\dfrac{11}{17}\)
Ta có:A-1=\(\dfrac{10^8+2}{10^8-1}-1=\dfrac{10^8+2-10^8+1}{10^8-1}=\dfrac{3}{10^8-1}\)
B-1=\(\dfrac{10^8}{10^8-3}-1=\dfrac{10^8-10^8+3}{10^8-3}=\dfrac{3}{10^8-3}\)
Do \(\dfrac{3}{10^8-1}>\dfrac{3}{10^8-3}\)
=>A-1>B-1
<=>A>B
Vậy...
a, Ta có: \(\dfrac{32}{37}>\dfrac{32}{54}>\dfrac{19}{54}\Rightarrow\dfrac{32}{37}>\dfrac{19}{54}\)
b, Ta có: \(\dfrac{18}{53}>\dfrac{18}{54}=\dfrac{1}{3}\Rightarrow\dfrac{18}{53}>\dfrac{1}{3}\left(1\right)\)
\(\dfrac{26}{78}=\dfrac{1}{3}\left(2\right)\)
Từ (1) và (2) ta suy ra \(\dfrac{18}{53}>\dfrac{26}{78}\)
c, Ta thấy: \(\dfrac{25}{103}< \dfrac{25}{100}=\dfrac{1}{4}\left(1\right)\)
\(\dfrac{74}{295}>\dfrac{74}{296}=\dfrac{1}{4}\left(2\right)\)
Từ (1) và (2) ta suy ra \(\dfrac{25}{103}< \dfrac{74}{295}\)
Mk biết làm ý a thôi
Rút gọn đi ta được: \(\frac{76}{67}-\frac{205}{302}\) rồi bạn tự tính nhá