\(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y+1}{6x}\)

B...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2022

a: =>x+1/2=5

=>x=9/2

b: =>(x-1)^2=900

=>x-1=30 hoặc x-1=-30

=>x=-29 hoặc x=31

17 tháng 11 2017

Ta có : 2x+1 /5 = 3y-2/7 = 2x+3y -1 /6x

=> 2x+1+3y-2 / 5+7 = 2x+3y-1 /6x

=> 2x+3y-1 / 12 = 2x+3y-1 / 6x

=> 12 = 6x => x =2

28 tháng 12 2018

4/ \(\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{y}{20}\\\dfrac{y}{20}=\dfrac{z}{24}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}=k\) (đặt k)

Suy ra \(x=15k;y=20k;z=24k\)

Thay vào,ta có:

\(M=\dfrac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)

28 tháng 12 2018

3. \(b^2=ac\Rightarrow\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}^{\left(đpcm\right)}\)

10 tháng 8 2018

\(xy-3x-y=6\)

\(=>xy+3x-y-3=6-3\)

\(=>x\left(y+3\right)-\left(y+3\right)=3\)

\(=>\left(y+3\right)\left(x-1\right)=3\)

y+3 -1 3 1 -3
x-1 -3 1 3 -1

y+3 -1 3 -3 1
y -4 -1 -7 -3

x-1 -3 1 3 -1
x -2 2 4 0

28 tháng 5 2018

\(a,Đặt\dfrac{x}{y}=\dfrac{2}{3}\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=k\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\\ A=\dfrac{2x-3y}{x-5y}=\dfrac{2\cdot2k-3\cdot3k}{2k-5\cdot3k}\\ =\dfrac{4k-9k}{2k-15k} \\ =\dfrac{5k}{13k}\\ =\dfrac{5}{13}\)

\(b,Thayx-y=7vàoB,tacó:\\ B=\dfrac{2x+7}{3x-y}+\dfrac{2y-7}{3y-x}\\ =\dfrac{2x+x-y}{3x-y}+\dfrac{2y-x+y}{3y-x}\\ =\dfrac{3x-y}{3x-y}+\dfrac{3y-x}{3y-x}\\ =1+1\\ =2\)

\(c,Đặt\dfrac{x}{3}=\dfrac{y}{5}=k\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\\ C=\dfrac{5x^2+3y^2}{10x^2-3y^2}\\ =\dfrac{5\left(3k\right)^2+3\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}\\ =\dfrac{45k^2+75k^2}{90k^2-75k^2}\\ =\dfrac{120k^2}{15k^2}\\ =8\)

\(d,\dfrac{a}{b}=\dfrac{5}{7}\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}=k\Leftrightarrow\left\{{}\begin{matrix}a=5k\\b=7k\end{matrix}\right.\\ D=\dfrac{5a-b}{3a-2b}\\ =\dfrac{5\cdot5k-7k}{3\cdot5k-2\cdot7k}\\ =\dfrac{25k-7k}{15k-14k}\\ =\dfrac{18k}{k}=18\)

\(e,Thayx-y=5vàoE,tacó:\\ E=\dfrac{3x-5}{2x+y}-\dfrac{4y+5}{x+3y}\\ =\dfrac{3x-x+y}{2x+y}-\dfrac{4y+x-y}{x+3y}\\ =\dfrac{2x+y}{2x+y}-\dfrac{3y+x}{x+3y}\\ =1-1=0\)

1 tháng 8 2017

* Đặt \(\dfrac{2x}{5}=\dfrac{-3y}{4}=k\Rightarrow2x=5k\Rightarrow x=\dfrac{5k}{2}\)

\(-3y=4k\Rightarrow y=\dfrac{-4k}{3}\)

a) \(A=\dfrac{5x+3y}{6x-2y}\)

thay \(x=\dfrac{5k}{2}\)\(y=\dfrac{-4k}{3}\), ta được

\(A=\dfrac{5.\dfrac{5k}{2}+3.\dfrac{-4k}{3}}{6.\dfrac{5k}{2}-2.\dfrac{-4k}{3}}=\dfrac{\dfrac{25k}{2}-4k}{15k+\dfrac{8k}{3}}=\dfrac{51}{106}\)

Bài B tương tự

1 tháng 8 2017

Đặt:

\(\dfrac{2x}{5}=\dfrac{-3y}{4}=k\)

\(\Rightarrow\left\{{}\begin{matrix}2x=5k\Rightarrow x=2,5k\\-3y=4k\Rightarrow y=\dfrac{4}{-3}k\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{5x+3y}{6x-2y}\)

\(A=\dfrac{5.2,5k+3.\dfrac{4}{-3}k}{6.2,5k-2.\dfrac{4}{-3}k}\)

\(A=\dfrac{12,5k+-4k}{15k-\dfrac{8}{-3}k}\)

\(A=\dfrac{8,5k}{\dfrac{53}{3}k}\)

b Tương tự

24 tháng 6 2018

Giải:

a) \(\dfrac{x}{-4}=\dfrac{-9}{x}\)

\(\Leftrightarrow x.x=-4.\left(-9\right)\)

\(\Leftrightarrow x^2=36\)

\(\Leftrightarrow x=\pm6\)

Vậy ...

b) \(\dfrac{x-1}{-15}=\dfrac{-60}{x-1}\)

\(\Leftrightarrow\left(x-1\right)^2=900\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=30\\x-1=-30\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=31\\x=-29\end{matrix}\right.\)

Vậy ...

d) \(\dfrac{x-2}{x-1}=\dfrac{x+4}{x+7}\)

\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=\left(x-1\right)\left(x+4\right)\)

\(\Leftrightarrow x^2+5x-14=x^2+3x-4\)

\(\Leftrightarrow5x-14=3x-4\)

\(\Leftrightarrow2x=10\)

\(\Leftrightarrow x=5\)

Vậy ...