Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ b,=a^2\left(a-x\right)-y\left(a-x\right)=\left(a^2-y\right)\left(a-x\right)\\ c,=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\\ d,=x\left(x-2y\right)+t\left(x-2y\right)=\left(x+t\right)\left(x-2y\right)\\ 2,\\ \Rightarrow x^2-4x+4-x^2+9=6\\ \Rightarrow-4x=-7\Rightarrow x=\dfrac{7}{4}\\ 3,\\ a,x^2+2x+2=\left(x+1\right)^2+1\ge1>0\\ b,-x^2+4x-5=-\left(x-2\right)^2-1\le-1< 0\)
a) Cách 1.
Ta có 2xy + 3z + 6y + xz = (2xy + xz) + (3z + 6y)
= x(2 y + z)+3(z + 2 y) = (z + 2y)(x + 3).
Cách 2.
Ta có 2xy + 3z + 6y + xz = (2x1/ + 6y) + (3z + xz)
= 2y(x + 3) + z(3 + x) = (z + 2y)(x + 3).
b) Biến đổi được a 4 - 9 rt 3 + a 2 -9a = (a- 9)a( a 2 +1).
c) Biến đổi được 3 x 2 + 5y - 3xy + (-5x) = (x - y)(3x - 5).
d) Biến đổi được x 2 - (a + b)x + ab = (x- a)(x - b).
e) Ta có 4 x 2 - 4xy + y 2 – 9 t 2 = ( 2 x - y ) 2 - ( 3 t ) 2
= (2x - y - 3t )(2x - y + 31).
g) Ta có x 3 - 3 x 2 y + 3 xy 2 - y 3 - z 3
= ( x - y ) 3 - z 3 = (x - y - z)( x 2 + y 2 + z 2 - 2xy + xz - yz).
h) Ta có x 2 - y 2 + 8x + 6y+ 7 = ( x 2 +8x + 16) - ( y 2 - 6y+ 9)
= ( x + 4 ) 2 - ( y - 3 ) 2 =(x-y + 7)(x + y + l).
\(2\left(x+5\right)-x^2-5x\)
\(=2\left(x+5\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(2-x\right)\)
\(y^2-6y+9-z^2\)
\(=\left(y-3\right)^2-z^2\)
\(=\left(y-3-z\right)\left(y-3+z\right)\)
\(1,\\ a,=6x^4-15x^3-12x^2\\ b,=x^2+2x+1+x^2+x-3-4x=2x^2-x-2\\ c,=2x^2-3xy+4y^2\\ 2,\\ a,=7x\left(x+2y\right)\\ b,=3\left(x+4\right)-x\left(x+4\right)=\left(3-x\right)\left(x+4\right)\\ c,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ d,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ 3,\\ a,\Leftrightarrow3x\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Câu 1
a)\(3x^2\left(2x^2-5x-4\right)=6x^4-15x^3-12x^2\)
b)\(\left(x+1\right)^2+\left(x-2\right)\left(x+3\right)-4x=x^2+2x+1+x^2+3x-2x-6-4x=2x^2-x-5\)
a: \(=5x\left(xy^2+3x+6y^2\right)\)
b: \(=\left(x-2\right)\left(x+3\right)-\left(x-2\right)\left(x+2\right)=\left(x-2\right)\left(x+3-x-2\right)=\left(x-2\right)\)
c: \(=\left(x-3\right)\left(x-4\right)\)
d: \(=x\left(x^2-2xy+y^2-9\right)\)
=x(x-y-3)(x-y+3)
e: \(=\left(x+y\right)^2-25=\left(x+y+5\right)\left(x+y-5\right)\)
f: \(=\left(x-4\right)\left(x+3\right)\)
1: Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54\right)\)
\(=x^3+27-x^3-54\)
=-27
2: Ta có: \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3\)
\(=2y^3\)
\(1,=x^3+270-x^3-54=-27\\ 2,=8x^3+y^3-8x^3+y^3=2y^3\\ 3,=x^3-3x^2+3x-1-x^3-8+3x^2-48=3x-57\\ 4,=x^3-x-x^3-1=-x-1\\ 5,=8x^3-5\left(8x^3+1\right)=-32x^3-5\\ 6,=27+x^3-27=x^3\\ 7,làm.ở.câu.3\\ 8,=x^3-6x^2+12x-8+6x^2-12x+6-x^3-1+3x\\ =3x-3\)
1. Ta có: hằng đẳng thức: \(x^3+y^3+z^3=3xyz\) nếu x+y+z=0
đặt b-c=x, c-a=y, a-b=z⇒x+y+z=0
\(\Rightarrow\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3=3\left(a-b\right)\left(c-a\right)\left(b-c\right)\)
2. \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
3. Tham khảo: https://hoc247.net/hoi-dap/toan-8/phan-tich-da-thuc-x-y-5-x-5-y-5-thanh-nhan-tu-faq447273.html
\(5,=x^3+2x^2y-7x^2y-14xy^2\\ =x^2\left(x+2y\right)-7xy\left(x+2y\right)\\ =x\left(x-7y\right)\left(x+2y\right)\)
Bài 1
1) 4x - x2 - 4 = 0
⇔ -( x2 - 4x + 4 ) = 0
⇔ -( x - 2 )2 = 0
⇔ x - 2 = 0
⇔ x = 2
2) 4( x - 1 )2 - ( 5 - 2x )2 = 0
⇔ 22( x - 1 )2 - ( 5 - 2x )2 = 0
⇔ ( 2x - 2 )2 - ( 5 - 2x ) = 0
⇔ ( 2x - 2 - 5 + 2x )( 2x - 2 + 5 - 2x ) = 0
⇔ ( 4x - 7 ).3 = 0
⇔ 4x - 7 = 0
⇔ x = 7/4
3) 9( x - 2 )2 - 4( 3 - x )2 = 0
⇔ 32( x - 2 )2 - 22( x - 3 )2 = 0
⇔ ( 3x - 6 )2 - ( 2x - 6 )2 = 0
⇔ ( 3x - 6 - 2x + 6 )( 3x - 6 + 2x - 6 ) = 0
⇔ x( 5x - 12 ) = 0
⇔ x = 0 hoặc 5x - 12 = 0
⇔ x = 0 hoặc x = 12/5
4) x2 - 6x + 5 = 0
⇔ x2 - 5x - x + 5 = 0
⇔ x( x - 5 ) - ( x - 5 ) = 0
⇔ ( x - 5 )( x - 1 ) = 0
⇔ x - 5 = 0 hoặc x - 1 = 0
⇔ x = 5 hoặc x = 1
Bài 2.
1) x2 - z2 + y2 - 2xy
= ( x2 - 2xy + y2 ) - z2
= ( x - y )2 - z2
= ( x - y - z )( x - y + z )
2) a3 - ay - a2x + xy
= ( a3 - a2x ) - ( ay - xy )
= a2( a - x ) - y( a - x )
= ( a - x )( a2 - y )
3) 2xy + 3z + 6y + xz
= ( 2xy + 6y ) + ( xz + 3z )
= 2y( x + 3 ) + z( x + 3 )
= ( x + 3 )( 2y + z )
4) x2 + 2xz + 2xy + 4yz
= ( x2 + 2xy ) + ( 2xz + 4yz )
= x( x + 2y ) + 2z( x + 2y )
= ( x + 2y )( x + 2z )
5) ( x + y + z )3 - x3 - y3 - z3
= x3 + y3 + z3 + 3( x + y )( y + z )( x + z ) - x3 - y3 - z3
= 3( x + y )( y + z )( x + z )