\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\)(x + y + z)

Bài...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2015

ĐK x >= 0 ; y >=1 ; z >= 2 

pt <=> \(2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)

=> \(x-2\sqrt{x}+1+y-1-2\sqrt{y-1}+1+z-2-2\sqrt{z-2}+1=0\)

=> \(\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)

4 tháng 7 2020

1.a) \(\sqrt{x^2-4}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{x-2}.\left(\sqrt{x+2}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\\sqrt{x+2}=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x+2=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

Vậy x=2 hoặc x=-1

15 tháng 8 2017

Bài 2:Áp dụng BĐT AM-GM ta có:

\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\)

\(\frac{1}{y}+\frac{1}{z}\ge2\sqrt{\frac{1}{yz}}\)

\(\frac{1}{x}+\frac{1}{z}\ge2\sqrt{\frac{1}{xz}}\)

CỘng theo vế 3 BĐT trên có: 

\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge2\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\)

Khi x=y=z

15 tháng 8 2017

Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)

\(..........................\)

\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

Cộng theo vế ta có:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=\frac{100}{10}=10\)

1 tháng 10 2019

câu 1 sai đề

1 tháng 10 2019

\(\sqrt{x}+1chứkophải\sqrt{x+1}\)

17 tháng 11 2016

e/ \(\sqrt{x-2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\)

\(\Leftrightarrow4+2\sqrt{\left(x-2\right)\left(6-x\right)}=x^2-8x+24\)

\(\Leftrightarrow2\sqrt{-x^2+8x-12}=x^2-8x+20\)

Đặt \(\sqrt{-x^2+8x-12}=a\left(a\ge0\right)\)thì pt thành

\(2a=-a^2+8\)

\(\Leftrightarrow a^2+2a-8=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-4\left(l\right)\\a=2\end{cases}}\)

\(\Leftrightarrow\sqrt{-x^2+8x-12}=2\)

\(\Leftrightarrow-x^2+8x-12=4\)

\(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)

17 tháng 11 2016

a/ \(4x^2+3x+3-4x\sqrt{x+3}-2\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(4x^2-4x\sqrt{x+3}+x+3\right)+\left(2x-1-2\sqrt{2x-1}+1\right)=0\)

\(\Leftrightarrow\left(2x-\sqrt{x+3}\right)^2+\left(1-\sqrt{2x-1}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2x=\sqrt{x+3}\\1=\sqrt{2x-1}\end{cases}\Leftrightarrow}x=1\)

29 tháng 7 2018

Ai giúp mình với, mình cần sự giúp đỡ, mai nộp bài rồi

8 tháng 9 2015

2/ \(\Rightarrow5\sqrt{x+1}-6\sqrt{x+1}+3\sqrt{x+1}=2\sqrt{2x+3}\)

\(\Rightarrow\sqrt{x+1}\left(5-6+3\right)=2\sqrt{2x+3}\)

\(\Rightarrow2\sqrt{x+1}=2\sqrt{2x-3}\Rightarrow\sqrt{x+1}=\sqrt{2x+3}\)

\(\Rightarrow x+1=2x+3\Rightarrow x=-2\)

8 tháng 9 2015

bài 1: 

đkxđ: x\(\ge\)0;y\(\ge\)1;z\(\ge\)2

\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)

\(\Leftrightarrow2\left(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\right)=2.\frac{1}{2}\left(x+y+z\right)\)

\(\Leftrightarrow2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)

\(\Leftrightarrow x-2\sqrt{x}+y-2\sqrt{y-1}+z-2\sqrt{z-2}=0\)

\(\Leftrightarrow x-2\sqrt{x}+1+y-1-2\sqrt{y-1}+1+z-2-2\sqrt{z-2}+1+1=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=-1\)(Vô lí)

Vậy phương trình vô nghiệm

bài 2:

đkxđ: x+1\(\ne\)0

<=>x\(\ne\)-1

\(5\sqrt{x+1}-\sqrt{36x+36}+\sqrt{9x+9}=\sqrt{8x+12}\)

\(\Leftrightarrow5\sqrt{x+1}-\sqrt{36.\left(x+1\right)}+\sqrt{9.\left(x+1\right)}=\sqrt{8x+12}\)

\(\Leftrightarrow5\sqrt{x+1}-6\sqrt{x+1}+3\sqrt{x+1}=\sqrt{8x+12}\)

\(\Leftrightarrow2\sqrt{x+1}=\sqrt{8x+12}\)

\(\Leftrightarrow4.\left(x+1\right)=8x+12\)

\(\Leftrightarrow4x+4=8x+12\)

\(\Leftrightarrow-4x=8\)

\(\Leftrightarrow x=-2\)(thõa mãn)

Vậy x=-2

9 tháng 10 2019

a.

\(DK:49-28x-4x^2\ge0\)

PT\(\Leftrightarrow\sqrt{49-28x-4x^2}=5\)

\(\Leftrightarrow49-28x-4x^2=25\)

\(\Leftrightarrow4x^2+28x-24=0\)

\(\Leftrightarrow x^2+7x-6=0\)

Ta co:

\(\Delta=7^2-4.1.\left(-6\right)=73>0\)

\(\Rightarrow\hept{\begin{cases}x_1=\frac{-7+\sqrt{73}}{2}\left(n\right)\\x_2=\frac{-7-\sqrt{73}}{2}\left(n\right)\end{cases}}\)

Vay nghiem cua PT la \(\hept{\begin{cases}x_1=\frac{-7+\sqrt{73}}{2}\\x_2=\frac{-7-\sqrt{73}}{2}\end{cases}}\)