Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Tìm \(x\):
a) \(\dfrac{x}{5}=\dfrac{5}{6}+\dfrac{-19}{30}\)
\(\dfrac{x}{5}=\dfrac{1}{5}\)
\(\Rightarrow x=1\)
b) \(\dfrac{-5}{6}-x=\dfrac{7}{12}-\dfrac{1}{3}.x\)
\(\dfrac{-5}{6}-\dfrac{7}{12}=x-\dfrac{1}{3}.x\)
\(x-\dfrac{1}{3}.x=\dfrac{-17}{12}\)
\(\dfrac{2}{3}.x=\dfrac{-17}{12}\)
\(x=\dfrac{-17}{12}:\dfrac{2}{3}\)
\(x=\dfrac{-17}{8}\)
c) \(2016^3.2016^x=2016^8\)
\(2016^x=2016^8:2016^3\)
\(2016^x=2016^{8-3}\)
\(2016^x=2016^5\)
\(\Rightarrow x=5\)
d) \(\left(x+\dfrac{3}{4}\right):\dfrac{5}{2}=3\dfrac{1}{2}\)
\(\left(x+\dfrac{3}{4}\right):\dfrac{5}{2}=\dfrac{7}{2}\)
\(\left(x+\dfrac{3}{4}\right)=\dfrac{7}{2}.\dfrac{5}{2}\)
\(x+\dfrac{3}{4}=\dfrac{35}{4}\)
\(x=\dfrac{35}{4}-\dfrac{3}{4}\)
\(x=\dfrac{32}{4}=8\)
e) \(\left(2,8.x-2^5\right):\dfrac{2}{3}=3^2\)
\(\left(2,8.x-2^5\right)=9.\dfrac{2}{3}\)
\(2,8.x-2^5=6\)
\(2,8.x=6+32\)
\(2,8.x=38\)
\(x=38:2,8\)
\(x=\dfrac{95}{7}\)
f) \(\dfrac{4}{7}.x-\dfrac{2}{3}=\dfrac{2}{5}\)
\(\dfrac{4}{7}.x=\dfrac{2}{5}+\dfrac{2}{3}\)
\(\dfrac{4}{7}.x=\dfrac{16}{15}\)
\(x=\dfrac{16}{15}:\dfrac{4}{7}\)
\(x=\dfrac{28}{15}\)
g) \(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{28}\)
\(\left(\dfrac{3x}{7}+1\right)=\dfrac{-1}{28}.\left(-4\right)\)
\(\dfrac{3x}{7}+1=\dfrac{1}{7}\)
\(\dfrac{3x}{7}=\dfrac{1}{7}-1\)
\(\dfrac{3x}{7}=\dfrac{-6}{7}\)
\(\Rightarrow3x=-6\)
\(x=\left(-6\right):3\)
\(x=-2\)
2. Thực hiện phép tính:
a) \(\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{2}{3}-\dfrac{1}{3}:\dfrac{3}{4}+1\dfrac{4}{5}\)
\(=\dfrac{1}{2}.\left(\dfrac{2}{3}+1\right)-\dfrac{1}{3}:\dfrac{3}{4}+\dfrac{9}{5}\)
\(=\dfrac{1}{2}.\dfrac{5}{3}-\dfrac{1}{3}:\dfrac{3}{4}+\dfrac{9}{5}\)
\(=\dfrac{5}{6}-\dfrac{4}{9}+\dfrac{9}{5}\)
\(=\dfrac{7}{18}+\dfrac{9}{5}\)
\(=\dfrac{197}{90}\)
b) \(\dfrac{7.5^2-7^2}{7.24+21}\)
\(=\dfrac{7.25-7.7}{7.24+7.3}\)
\(=\dfrac{7.\left(25-7\right)}{7.\left(24+3\right)}\)
\(=\dfrac{7.18}{7.27}\)
\(=\dfrac{2}{3}\)
c) \(\dfrac{2}{3}+\dfrac{1}{3}.\left(\dfrac{-4}{9}+\dfrac{5}{6}\right):\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{1}{3}.\dfrac{7}{18}:\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{7}{54}:\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{2}{9}\)
\(=\dfrac{8}{9}\)
1,
x =( -12 . ( -3) ) : 2
x = 18
2,
a, -7/9 . 6/11 + (-2/9) = -14/33 + (-2/9) = -64/99
b, -4/7 : 2 = -4/7 . 1/2 = -2/7
c, 115 - (24 - 5. 3) = 115 - ( 24 - 15) = 115 - 9 = 106
d,= -3/7. (5/9 + 4/9) + 17/7 = -3/7 . 1 +17/7 = -3/7 . 17/7 = -51/49
e, ??? mình cx k biết
Ta có \(x=\dfrac{2016}{x\times\left(x+1\right)\times\left(x+2\right)\times........\times\left(x+2016\right)}\)
\(\dfrac{1}{2015!}=\dfrac{2016}{2016!}=\dfrac{2016}{1\times2\times...........\times2016}\)
Vì x > 0=> \(\left(x+1\right)\times\left(x+2\right)\times...\times\left(x+2016\right)>1\times2\times...\times2016\)
\(\Rightarrow\dfrac{1}{\left(x+1\right)\times\left(x+2\right)\times.......\times\left(x+2016\right)}< \dfrac{1}{1\times2\times..........\times2016}\)\(\Rightarrow\dfrac{2016}{\left(x+1\right)\times\left(x+2\right)\times.......\times\left(x+2016\right)}< \dfrac{2016}{1\times2\times......\times2016}\)
\(\Leftrightarrow x< \dfrac{1}{2015!}\)(đpcm)
Ta có \(x=\dfrac{2016}{\left(x+1\right)\times\left(x+2\right)\times....\times\left(x+2016\right)}\)
\(\dfrac{1}{2015!}=\dfrac{2016}{2016!}=\dfrac{2016}{1\times2\times.....\times2016}\)
Vì x>0=>(x+1)×(x+2)×.............×(x+2016) >\(1\times2\times.....\times2016\)
\(\Rightarrow\dfrac{1}{\left(x+1\right)\times\left(x+2\right)\times......\times\left(x+2016\right)}>\dfrac{1}{1\times2\times......\times2016}\)
\(\Rightarrow\dfrac{2016}{\left(x+1\right)\times\left(x+2\right)\times......\times\left(x+2016\right)}>\dfrac{2016}{1\times2\times......\times2016}\)
\(\Leftrightarrow x< \dfrac{1}{2015!}\)(đpcm)
Câu 1:
a: \(\left(3x-15\right)=3^7:3^5\)
=>3x-15=9
=>3x=24
hay x=8
b: \(\left(4x+32\right)=43\cdot2^2\)
=>4x+32=172
=>4x=140
hay x=35
c: \(6^{2x-7}=216\)
=>2x-7=3
=>2x=10
hay x=5
d: \(5^x+5^{x+2}=650\)
\(\Leftrightarrow5^x\cdot26=650\)
\(\Leftrightarrow5^x=25\)
hay x=2
a) \(\dfrac{2}{3}.x-\dfrac{1}{2}.x=\dfrac{5}{12}\)
=> \(\left(\dfrac{2}{3}-\dfrac{1}{2}\right).x=\dfrac{5}{12}\)
=> \(\left(\dfrac{4}{6}-\dfrac{3}{6}\right).x=\dfrac{5}{12}\)
=> \(\dfrac{1}{6}\) . x = \(\dfrac{5}{12}\)
=> \(x=\dfrac{5}{12}:\dfrac{1}{6}\)
=> x =\(\dfrac{5}{12}.\dfrac{6}{1}\)
=> x = \(\dfrac{5}{2}\)
Vậy x = \(\dfrac{5}{2}\)
a) \(\left(2x-3\right)\left(6-2x\right)=0\)
\(\circledast\)TH1: \(2x-3=0\\ 2x=0+3\\ 2x=3\\ x=\dfrac{3}{2}\)
\(\circledast\)TH2: \(6-2x=0\\ 2x=6-0\\ 2x=6\\ x=\dfrac{6}{2}=3\)
Vậy \(x\in\left\{\dfrac{3}{2};3\right\}\).
b) \(\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)=0\)
\(\dfrac{1}{3}x=0-\dfrac{2}{5}\left(x-1\right)\)
\(\dfrac{1}{3}x=-\dfrac{2}{5}\left(x-1\right)\)
\(-\dfrac{2}{5}-\dfrac{1}{3}=-x\left(x-1\right)\)
\(-\dfrac{11}{15}=-x\left(x-1\right)\)
\(\Rightarrow x=1.491631652\)
Vậy \(x=1.491631652\)
c) \(\left(3x-1\right)\left(-\dfrac{1}{2}x+5\right)=0\)
\(\circledast\)TH1: \(3x-1=0\\ 3x=0+1\\ 3x=1\\ x=\dfrac{1}{3}\)
\(\circledast\)TH2: \(-\dfrac{1}{2}x+5=0\\ -\dfrac{1}{2}x=0-5\\ -\dfrac{1}{2}x=-5\\ x=-5:-\dfrac{1}{2}\\ x=10\)
Vậy \(x\in\left\{\dfrac{1}{3};10\right\}\).
d) \(\dfrac{x}{5}=\dfrac{2}{3}\\ x=\dfrac{5\cdot2}{3}\\ x=\dfrac{10}{3}\)
Vậy \(x=\dfrac{10}{3}\).
e) \(\dfrac{x}{3}-\dfrac{1}{2}=\dfrac{1}{5}\\ \)
\(\dfrac{x}{3}=\dfrac{1}{5}+\dfrac{1}{2}\)
\(\dfrac{x}{3}=\dfrac{7}{10}\)
\(x=\dfrac{3\cdot7}{10}\)
\(x=\dfrac{21}{10}\)
Vậy \(x=\dfrac{21}{10}\).
f) \(\dfrac{x}{5}-\dfrac{1}{2}=\dfrac{6}{10}\)
\(\dfrac{x}{5}=\dfrac{6}{10}+\dfrac{1}{2}\)
\(\dfrac{x}{5}=\dfrac{11}{10}\)
\(x=\dfrac{5\cdot11}{10}\)
\(x=\dfrac{55}{10}=\dfrac{11}{2}\)
Vậy \(x=\dfrac{11}{2}\).
g) \(\dfrac{x+3}{15}=\dfrac{1}{3}\\ x+3=\dfrac{15}{3}=5\\ x=5-3\\ x=2\)
Vậy \(x=2\).
h) \(\dfrac{x-12}{4}=\dfrac{1}{2}\\ x-12=\dfrac{4}{2}=2\\ x=2+12\\ x=14\)
Vậy \(x=14\).
Bài 1:
a, \(\left(x-2\right)^2=9\)
\(\Rightarrow x-2\in\left\{-3;3\right\}\Rightarrow x\in\left\{-1;5\right\}\)
b, \(\left(3x-1\right)^3=-8\)
\(\Rightarrow3x-1=-2\Rightarrow3x=-1\)
\(\Rightarrow x=-\dfrac{1}{3}\)
c, \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)
\(\Rightarrow x+\dfrac{1}{2}\in\left\{-\dfrac{1}{4};\dfrac{1}{4}\right\}\)
\(\Rightarrow x\in\left\{-\dfrac{3}{4};-\dfrac{1}{4}\right\}\)
d, \(\left(\dfrac{2}{3}\right)^x=\dfrac{4}{9}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^2\)
Vì \(\dfrac{2}{3}\ne\pm1;\dfrac{2}{3}\ne0\) nên \(x=2\)
e, \(\left(\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{16}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{x-1}=\left(\dfrac{1}{2}\right)^4\)
Vì \(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(x-1=4\Rightarrow x=5\)
f, \(\left(\dfrac{1}{2}\right)^{2x-1}=8\) \(\Rightarrow\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^{-3}\) Vì \(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(2x-1=-3\) \(\Rightarrow2x=-2\Rightarrow x=-1\) Chúc bạn học tốt!!!
Bài 1 :
a) \(x+2\dfrac{3}{4}=5\dfrac{2}{3}\)
\(x+\dfrac{11}{4}=\dfrac{17}{3}\)
\(x=\dfrac{17}{3}-\dfrac{11}{4}\)
\(x=\dfrac{35}{12}\)
Vậy .........................
b) \(x.3\dfrac{1}{2}=4\dfrac{3}{4}\)
\(x.\dfrac{7}{2}=\dfrac{19}{4}\)
\(x=\dfrac{19}{4}:\dfrac{7}{2}\)
\(x=\dfrac{19}{14}\)
Vậy .................
c) \(x:3\dfrac{1}{2}=4\dfrac{3}{4}\)
\(x:\dfrac{7}{2}=\dfrac{19}{4}\)
\(x=\dfrac{19}{4}.\dfrac{7}{2}\)
\(x=\dfrac{133}{8}\)
Vậy ...................
e) \(x-\dfrac{3}{4}=6.\dfrac{3}{8}\)
\(x-\dfrac{3}{4}=\dfrac{9}{4}\)
\(x=\dfrac{9}{4}+\dfrac{3}{4}\)
\(x=3\)
Vậy .............
f) \(\dfrac{7}{8}:x=3-\dfrac{1}{2}\)
\(\dfrac{7}{8}:x=\dfrac{5}{2}\)
\(x=\dfrac{7}{8}:\dfrac{5}{2}\)
\(x=\dfrac{7}{20}\)
Vậy ................
g) \(x+\dfrac{1}{2}.\dfrac{1}{3}=\dfrac{3}{4}\)
\(x+\dfrac{1}{6}=\dfrac{3}{4}\)
\(x=\dfrac{3}{4}-\dfrac{1}{6}\)
\(x=\dfrac{7}{12}\)
Vậy .................
h) \(x+17,67=100-63,2\)
\(x+17,67=36,8\)
\(x=36,8-17,67\)
\(x=19,13\)
Vậy ................
i) \(x:0,01=10\)
\(x=10.0,01\)
\(x=0,1\)
Vậy ...............
k) \(8,01-x=1,99\)
\(x=8,01-1,99\)
\(x=6,02\)
Vậy ............
l) \(x.0,5=2,2\)
\(x=2,2:0,5\)
\(x=4,4\)
Vậy ............
m) \(x:7,5=3,7+4,1\)
\(x:7,5=7,8\)
\(x=7,8.7,5\)
\(x=58,5\)
Vậy ............
a) \(\left(\dfrac{1}{2}x-3\right)\left(-\dfrac{1}{3}+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-3=0\\-\dfrac{1}{3}+x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=0+3\\-\dfrac{1}{3}+x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3:\dfrac{1}{2}\\x=0-\left(-\dfrac{1}{3}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\dfrac{1}{3}\end{matrix}\right.\)
d) \(9x^2=1\)
\(\Leftrightarrow x^2=1:9\)
\(\Leftrightarrow x^2=\dfrac{1}{9}\)
\(\Leftrightarrow x^2=\left(\dfrac{1}{3}\right)^2\)
\(\Leftrightarrow x=\dfrac{1}{3}\)