K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a: \(\Leftrightarrow\left|3x-7\right|+\left|3x-15\right|=8\)

TH1: x<7/3

Pt sẽ là \(7-3x+15-3x=8\)

=>22-6x=8

=>6x=14

hay x=7/3(loại)

TH2: 7/3<=x<5

Pt sẽ là \(3x-7+15-3x=8\)

=>8=8(luôn đúng)

TH3: x>=5

Pt sẽ là 3x-7+3x-15=8

=>6x-22=8

hay x=5(nhận)

b: \(\Leftrightarrow\left|4x-98\right|+\left|4x-8\right|=90\)

TH1: x<2

Pt sẽ là 8-4x+98-4x=90

=>106-8x=90

=>x=2(loại)

TH2: 2<=x<49/2

Pt sẽ là 4x-8+98-4x=90

=>90=90(luôn đúng)

TH3: x>=49/2

Pt sẽ là 4x-8+4x-98=90

=>8x-106=90

=>8x=196

hay x=24,5(nhận)

31 tháng 7 2016

Bài 3: 

\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\) 

\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\) 

\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\) 

Thay x = 3 vào đa thức, ta có:

\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\) 

\(f\left(3\right)=240-28+27=239\)

Vậy đa thức trên bằng 239 tại x = 3

Thay x = -3 vào đa thức. ta có:

\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)

\(f\left(-3\right)=-240+28+27=-185\)

31 tháng 7 2016

Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)

\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)

\(f\left(x\right)=2x^6+x^2+3x^4\)

Thay x=1 vào đa thức, ta có:

\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)

Đa thức trên bằng 6 tại x =1

Thay x = - 1 vào đa thức, ta có:

\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)

Đa thức trên có nghiệm = 0

Cái này có cái VD : x(8 + x^2) nên nó có vẻ hơi bị trìu tượng 1 chút.

Ta có : \(M\left(x\right)=x^3\left(9x^2-1\right)-4x\left(x-1\right)+9x^5-4x^2+7+3x^4\)

\(=9x^5-4x^3-4x^2-4x+9x^5-4x^2+7+3x^4\)

\(=18x^5-4x^3-8x^2-4x+7+3x^4\)

\(N\left(x\right)=10x^2+5x^3-3x^3\left(x+1\right)-x\left(8+x^2\right)+8x-7\)

\(=10x^2+5x^3-3x^4+3x^3-8x-x^3+8x-7\)

\(=10x^2+7x^3-3x^4-7\)

19 tháng 6 2019

Bài 2: 

3x + 2(5 - x) = 0

<=> 3x + 10 - 2x = 0

<=> x + 10 = 0

<=> x = 0 - 10

<=> x = -10

=> x = -10

19 tháng 6 2019

Bài 3: 

6(3q + 4q) - 8(5p - q) + (p - q)

= 6.3p + 6.4q - 8.5p - (-8).q + p - q

= 18p + 24q - 40p + 8q + p - q

= (18p - 40p + p) + (24q + 8q - q)

= -21p + 31q

17 tháng 7 2021

a) \(A\left(x\right)=-1+5x^6-6x^2-5-9x^6+4x^4-3x^2\)

\(\Rightarrow A\left(x\right)=\left(-1-5\right)+\left(5x^6-9x^6\right)-\left(6x^2+3x^2\right)+4x^4\)

\(\Rightarrow A\left(x\right)=-6-4x^6-9x^2+4x^4\)

\(\Rightarrow A\left(x\right)=-4x^6+4x^4-9x^2-6\)

\(B\left(x\right)=2-5x^2+3x^4-4x^2+3x+x^4-4x^6-7x\)

\(\Rightarrow B\left(x\right)=-4x^6+\left(3x^4+x^4\right)-\left(5x^2+4x^2\right)+\left(3x-7x\right)+2\)

\(\Rightarrow B\left(x\right)=-4x^6+4x^4-9x^2-4x+2\)

b) Đa thức A(x) có bậc là 6, hệ số cao nhất là -4, hệ số tự do là -6.

Đa thức B(x) có bậc là 6, hệ số cao nhất là -4, hệ số tự do là 2.

17 tháng 7 2021

c) \(C\left(x\right)=A\left(x\right)-B\left(x\right)=\left(-4x^6+4x^4-9x^2-6\right)-\left(-4x^6+4x^4-9x^2-4x+2\right)\)

\(\Rightarrow C\left(x\right)=-4x^6+4x^4-9x^2-6+4x^6-4x^4+9x^2-4x+2\)

\(\Rightarrow C\left(x\right)=\left(-4x^6+4x^6\right)+\left(4x^4-4x^4\right)+\left(-9x^2+9x^2\right)-4x+\left(-6+2\right)\)

\(\Rightarrow C\left(x\right)=-4x-4\)

Xét \(C\left(x\right)=0\) \(\Rightarrow-4x-4=0\) \(\Rightarrow-4x=4\) \(\Rightarrow x=-1\)

Vậy \(C\left(x\right)=-4x-4\) có 1 nghiệm là  \(x=-1\)

a: \(\Leftrightarrow12x^2-10x-12x^2-28x=7\)

=>-38x=7

hay x=-7/38

b: \(\Leftrightarrow-10x^2-5x+9x^2+6x+x^2-\dfrac{1}{2}x=0\)

=>1/2x=0

hay x=0

c: \(\Leftrightarrow18x^2-15x-18x^2-14x=15\)

=>-29x=15

hay x=-15/29

d: \(\Leftrightarrow x^2+2x-x-3=5\)

\(\Leftrightarrow x^2+x-8=0\)

\(\text{Δ}=1^2-4\cdot1\cdot\left(-8\right)=33>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{33}}{2}\\x_2=\dfrac{-1+\sqrt{33}}{2}\end{matrix}\right.\)

e: \(\Leftrightarrow-15x^2+10x-10x^2-5x-5x=4\)

\(\Leftrightarrow-25x^2=4\)

\(\Leftrightarrow x^2=-\dfrac{4}{25}\left(loại\right)\)

24 tháng 7 2019

a) \(A\left(x\right)=-1+5^6-6x^2-5-9x^6+4x^4-3x^2\)

\(=-9x^6+4x^4-\left(3x^2+6x^2\right)+\left(5^6-1-5\right)\)

\(=-9x^6+4x^4-9x^2+\left(5^6-1-5\right)-15619\)

    \(B\left(x\right)=2-5x^2+3x^4-4x^2+3x+x^4-4x^6-7x\)

\(=-4x^6+\left(3x^4+x^4\right)-\left(5x^2+4x^2\right)+\left(3x-7x\right)+2\)

\(=-4x^6+4x^4-9x^2-4x+2\)

24 tháng 7 2019

\(A\left(x\right)-B\left(x\right)\)

\(=\left(-9x^6+4x^4-9x^2-15619\right)-\left(-4x^6+4x^4-9x^2-4x+2\right)\)

\(=-9x^6+4x^4-9x^2-15619+4x^6-4x^4+9x^2+4x-2\)

\(=-5x^6+4x-15621\)

Hình như C(x) vô nghiệm

22 tháng 4 2022

a)\(M\left(x\right)=3x^4-x^3-2x^2+5x+7\)

\(N\left(x\right)=-3x^4+x^3+10x^2+x-7\)

 

22 tháng 4 2022

b)\(A\left(x\right)=M\left(x\right)+N\left(x\right)\)

\(=>A\left(x\right)=3x^4-x^3-2x^2+5x+7-3x^4+x^3+10x^2+x-7\)

\(A\left(x\right)=8x^2+6x\)

\(B\left(x\right)=3x^4-x^3-2x^2+5x+7+3x^4-x^3-10x^2-x+7\)

\(B\left(x\right)=6x^4-2x^3-12x^2+x+14\)

1 tháng 9 2020

a)

\(A=-1+5x^6-6x^2-5+9x^6+4x^2-3x^2\)

\(=-6+14x^6-5x^2\)

→ Sắp xếp: \(A=14x^6-5x^2-6\)

\(B=-6-5x^2+3x^4-5x^2+3x+x^4+14x^6-5x\)

\(=-6-10x^2+4x^4-2x+14x^6\)

→ Sắp xếp: \(B=14x^6+4x^4-10x^2-2x-6\)

b) \(A\left(x\right)+B\left(x\right)=14x^6-5x^2-6+14x^6+4x^4-10x^2-2x-6\)

\(=28x^6-15x^2+4x^4-2x-12\)

\(A\left(x\right)-B\left(x\right)=\left(14x^6-5x^2-6\right)-\left(14x^6+4x^4-10x^2-2x-6\right)\)

\(=14x^6-5x^2-6-14x^6-4x^4+10x^2+2x+6\)

\(=5x^2-4x^4+2x\)