K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

Ta xét 3 trường hợp :

TH1:

Nếu \(n=3k\)( Với \(k\in N\)) thì \(n.2^n⋮3\)

\(\Rightarrow n.2^n+1\) không chia hết cho \(3\)

\(\Rightarrow\)Loại

TH2:

Nếu \(n=3k+1\) ( Với \(k\in N\)) thì \(n.2^n+1=\left(3k+2\right).2^{3k+1}+1\)

\(=3k.2^{3k+1}+2^{3k+1}+1\)

\(=3k.2^{3k+1}+2.8^k+1\)

Do đó : \(n.2^n+1⋮3\Leftrightarrow\left(2.8^k+1\right)⋮3\)

Vì \(8\equiv-1\) ( mod 3 ) nên \(8^k\equiv\left(-1\right)\) ( mod 3)

Suy ra : \(2.8^k+1⋮3\Leftrightarrow2.\left(-1\right)^k+1\equiv0\) ( mod 3 )

\(\Leftrightarrow k\) chẵn \(\Leftrightarrow k=2m\) ( Với \(m\in N\)

Do đó : \(n=6m+1\), với \(m\in N\)

TH3:

Nếu \(n=3k+2\) ( với \(k\in N\)) thì \(n.2^n+1=\left(3k+2\right).2^{3k+2}+1\)

\(=3k.2^{3k+2}+2.2^{3k+2}=3k.2^{3k+2}+8^{k+1}+1\)

Do đó : \(\left(n.2^n+1\right)⋮3\Leftrightarrow\left(8^{k+1}+1\right)⋮3\)

Vì \(8\equiv-1\)( mod 3 ) nên \(8^{k+1}\equiv\left(-1\right)^{k+1}\)( mod 3) 

Suy ra : \(\left(8^{k+1}+1\right)⋮3\Leftrightarrow\left(-1\right)^{k+1}+1\equiv0\)( mod 3)

\(\Leftrightarrow k+1\)lẻ \(\Leftrightarrow k\)chẵn \(\Leftrightarrow k=2m\)( Với \(m\in N\))

Do đó :\(n=6m+2\), với \(m\in N\)

Vậy điều kiện cần tìm của m là \(m\equiv1\)( mod 6) hoặc \(m\equiv2\)( mod 6) 

Chúc bạn học tốt ( -_- )

17 tháng 1 2019

                            Giải

* Xét 3 trường hợp :

   * Trường hợp 1 : n = 3k

\(\Rightarrow\left(3k\times2^{3k}+1\right)⋮3\)

\(\Rightarrow\left(3k+8^k+1\right)⋮3\)

Vì \(8^k\)không chia hết cho 3 nên loại trường 1

   *Trường hợp 2 : n = 3k + 1

\(\Rightarrow\left[\left(3k+1\right)2^{3k+1}+1\right]⋮3\)

\(\Rightarrow\left[\left(3k+1\right)2^{3k}.2+1\right]⋮3\)

\(\Rightarrow\left[\left(3k+1\right)8^k.2+1\right]⋮3\)

\(\Rightarrow\left(24k^k+8^k\right).2+1⋮3\)

Mà 1 không chia hết cho 3 nên loại trường hợp 2

Vậy n = 3k + 2

Bài 10:

a: 2x-3 là bội của x+1

=>\(2x-3⋮x+1\)

=>\(2x+2-5⋮x+1\)

=>\(-5⋮x+1\)

=>\(x+1\in\left\{1;-1;5;-5\right\}\)

=>\(x\in\left\{0;-2;4;-6\right\}\)

b: x-2 là ước của 3x-2

=>\(3x-2⋮x-2\)

=>\(3x-6+4⋮x-2\)

=>\(4⋮x-2\)

=>\(x-2\inƯ\left(4\right)\)

=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(x\in\left\{3;1;4;0;6;-2\right\}\)

Bài 14:

a: \(4n-5⋮2n-1\)

=>\(4n-2-3⋮2n-1\)

=>\(-3⋮2n-1\)

=>\(2n-1\inƯ\left(-3\right)\)

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

=>\(2n\in\left\{2;0;4;-2\right\}\)

=>\(n\in\left\{1;0;2;-1\right\}\)

mà n>=0

nên \(n\in\left\{1;0;2\right\}\)

b: \(n^2+3n+1⋮n+1\)

=>\(n^2+n+2n+2-1⋮n+1\)

=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)

=>\(-1⋮n+1\)

=>\(n+1\in\left\{1;-1\right\}\)

=>\(n\in\left\{0;-2\right\}\)

mà n là số tự nhiên

nên n=0

4 tháng 12 2023

thiếu bài 16

 

Câu hỏi của Davids Villa - Toán lớp 6 - Học toán với OnlineMath

Xem bài 1 tai jđây nhé ! mk ngại viết 

Bài 1:

Gọi p là số nguyên tố cần tìm và \(p=a+b=c-d\)với \(a,b,c,d\)là các số nguyên tố ,\(c>d\)

Vì \(p=a+b>2\)nên p là số lẻ 

\(\Rightarrow a+b\)và \(c-d\)là các số lẻ 

Vì \(a+b\)là số lẻ nên một trong hai số \(a,b\)là số chẵn ,giả sử b chẵn .Vì b là số nguyên tố nên \(b=2\)

Vì \(c-d\)là số lẻ nên một trong hai số \(c,d\)là số chẵn .Vì \(c,d\)là các số nguyên tố \(c>d\)nên d là số chẵn \(\Rightarrow d=2\)

Do vậy :\(p=a+2=c-2\Rightarrow c=a+4\)

Ta cần tìm số nguyên tố a  để \(p=a+2\)và \(c=a+4\)cũng là số nguyên tố 

Vậy số nguyên tố cần tìm là 5: với \(5=3+2=7-2\)

Bài 2 :

Từ \(p=\left(n-2\right)\left(n^2+n-5\right)\)suy ra \(n-2\) và \(n^2+n-5\)là ước của p

Vì p là số nguyên tố nên hoặc \(n-2=1\)hoặc \(n^2+n-5=1\)

Nếu \(n-2=1\)thì \(n=3\)

Khi đó \(p=1.\left(3^2+3-5\right)=7\)là số nguyên tố (thảo mãn) 

Nếu \(n^2+n-5=1\Leftrightarrow n^2+n=6\Leftrightarrow n\left(n+1\right)\)\(=2.3\Rightarrow n=2\)

Khi đó \(p=\left(2-2\right).1=0\)không là số nguyên tố

Vậy \(n=3\)

Chúc bạn học tốt ( -_- )

28 tháng 10 2016

\(abc=\left(n^2-1\right)-\left(n-2\right)^2\)

\(\left(100a+10b+c\right)-\left(100c+10b+a\right)=\left(n^2-1\right)-\left(n^2-4n+4\right)\)

\(99a-99c=4n-5\)

\(99\left(a-c\right)=4n-5\)

Ta có : 99(a-c) chia hết cho 99 nên (4n-5) chia hết cho 99 (1)

* Mặt khác thì : \(abc=n^2-1\)

\(=>n^2=abc+1\)

=> 101 lớn hơn hoặc bằng \(n^2\) bé hơn 1000

=> 100 < 101 < \(n^2\) <1000<1024

=> \(10^2< n^2< 32^2\)

=> 10 < n < 32

=> 40 < 4n < 128

=> 35 < 4n-5< 123 (2)

Từ (1)(2) => 4n - 5 = 99

=> 4n = 104

=> n = 26

Vậy \(abc=n^2-1=26^2-1=675\)

20 tháng 12 2015

n= 4,3

Tick nha 

Bài 2:

10^n có tổng các chữ số là 1

5^3 có tổng các chữ số là 8

=>10^n+5^3 có tổng các chữ số là 9

=>10^n+5^3 chia hết cho 9

31 tháng 10 2017

BAI 1

ta co n+6 chia het  cho n 

ma n chia het cho n 

suy ra 6 chia het cho n 

ma n la mot so tu nhien nen 

ta co n thuoc U(6)=1,2,3,6

vay n bang 1,2,3,6

bai 2

(2n-1).(y+3)=12

suy ra 2n-1 va y+3 thuoc uoc cua 12 =1,12,3,4,6,2

neu 2n-1 =1 suy ra n=1

thi y+3=12 suy ra y=9

neu 2n-1=12 suy ra n=11/2(ko thoa man )

neu 2n-1=3 suy ra n=2

thi y+3=4 suy ra y=1

neu 2n-1=4 ruy ra n=5/2( ko thoa man )

neu 2n-1=6 suy ra n=7/2( ko thoa man )

neu 2n-1=2 suy ra n=3/2 ( ko thoa man )

vay cac cap so n :y can tim la (2;1),(1;9)

31 tháng 10 2017

n thuoc  boi cua 6