\(\dfrac{32}{x^2+2}\)

b) B= \(\dfr...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

Lời giải:

a. Vì $x^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $x^2+2\geq 2$

$\Rightarrow A=\frac{32}{x^2+2}\leq \frac{32}{2}=16$

Vậy $A_{\max}=16$ khi $x^2=0\Leftrightarrow x=0$

b.

$(x+1)^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow 2(x+1)^2+3\geq 3$

$\Rightarrow B=\frac{5}{2(x+1)^2+3}\leq \frac{5}{3}$

Vậy $B_{\max}=\frac{5}{3}$ khi $x+1=0\Leftrightarrow x=-1$

 

5 tháng 11 2017

2.

a) Vì \(\left|2x+1\right|\ge0\forall x\in R\\ \Rightarrow3\left|2x+1\right|\ge0\forall x\in R\\ \Rightarrow3\left|2x+1\right|-4\ge-4\forall x\in R\\ \Rightarrow A\ge-4\forall x\in R\)

Vậy GTNN của A là -4 đạt được khi \(x=-\dfrac{1}{2}\)

5 tháng 11 2017

Mai mk phải nộp rồi ! Các bn ơi giúp mk với! Help Me ! Thank you !

1 tháng 7 2017

a) ( x + 5 )3 = -64

x + 5 = - 4

x = - 4 - 5

x = -9

b) (2x - 3)2=9

2x - 3 = 3

2x = 3+3

2x = 6

x = 6 : 2

x = 3

e) \(\dfrac{8}{2x}=4\)

=> 4 . 2x = 8

8x =8

x = 8 : 8

x = 1

g) \(\left(\dfrac{1}{2}\right)^{2x-1}=\dfrac{1}{8}\)

\(\left(\dfrac{1}{2}\right)^{2x}:\left(\dfrac{1}{2}\right)^1=\dfrac{1}{8}\)

\(\left(\dfrac{1}{2}\right)^{2x}:\dfrac{1}{2}=\dfrac{1}{8}\)

\(\left(\dfrac{1}{2}\right)^{2x}=\dfrac{1}{8}.\dfrac{1}{2}\)

\(\left(\dfrac{1}{2}\right)^{2x}=\dfrac{1}{16}\)

\(\left(\dfrac{1}{2}\right)^{2x}=\left(\dfrac{1}{2}\right)^{2.2}\)

=> x = 2

h) \(\left(\dfrac{1}{2}\right)^2.x=\left(\dfrac{1}{2}\right)^5\)

\(\dfrac{1}{4}.x=\dfrac{1}{32}\)

x = \(\dfrac{1}{32}:\dfrac{1}{4}\)

x = \(\dfrac{1}{8}\)

i) \(\left(\dfrac{-1}{3}\right)x=\dfrac{1}{81}\)

\(x=\dfrac{1}{81}:\left(\dfrac{-1}{3}\right)\)

\(x=\dfrac{-1}{27}\)

2 tháng 7 2017

a) (x + 5)3 = -64

=> (x + 5)3 = (-4)3

x + 5 = -4

x = -4 - 5

x = -9

b) (2x - 3)2 = 9

=> (2x - 3)2 = (\(\pm\)3)2

=> 2x - 3 = 3 hoặc 2x - 3 = -3

*2x - 3 = 3

2x = 3 + 3

2x = 9

x = \(\dfrac{9}{2}\)

*2x - 3 = -3

2x = -3 + 3

2x = 0

x = 0 : 2

x = 0

Vậy x \(\in\left\{\dfrac{9}{2};0\right\}\)

c) \(\dfrac{x}{\dfrac{4}{2}}=\dfrac{4}{\dfrac{x}{2}}\)

=> \(x.\dfrac{x}{2}=4.\dfrac{4}{2}\)

\(\dfrac{x}{2}=8\)

x = 8 : 2

x = 4

d) \(\dfrac{-32}{\left(-2\right)^n}=4\)

\(\Rightarrow\dfrac{\left(-2\right)^5}{\left(-2\right)^n}=\left(-2\right)^2\)

=> (-2)n . (-2)2= (-2)5

(-2)n = (-2)5 : (-2)2

(-2)n = (-2)3

Vậy n = 3

e) \(\dfrac{8}{2x}=4\)

=> 2x . 4 = 8

2x = 8 : 4

2x = 2

x = 1

g) \(\left(\dfrac{1}{2}\right)^{2x-1}=\dfrac{1}{8}\)

\(\Rightarrow\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^3\)

2x - 1 = 3

2x = 3 + 1

2x = 4

x = 4 : 2

x = 2

h) \(\left(\dfrac{1}{2}\right)^2.x=\left(\dfrac{1}{2}\right)^5\)

\(x=\left(\dfrac{1}{2}\right)^5:\left(\dfrac{1}{2}\right)^2\)

\(x=\left(\dfrac{1}{2}\right)^3\)

\(x=\dfrac{1}{8}\)

i) \(\left(\dfrac{-1}{3}\right)x=\dfrac{1}{81}\)

\(x=\dfrac{1}{81}:\left(\dfrac{-1}{3}\right)\)

\(x=\left(\dfrac{-1}{3}\right)^4:\left(\dfrac{-1}{3}\right)\)

\(x=\left(\dfrac{-1}{3}\right)^3\)

\(x=\dfrac{-1}{27}\).

16 tháng 9 2017

cái này mà bạn ko biết làm á, bấm máy tính tạch tạch mấy phát là ra mà

17 tháng 9 2017

lười làm nên nhờ mấy bạn giải dùm

20 tháng 8 2017

Bn tách ra đi,mỏi tay lắm luôn ik,đánh máy mà.

20 tháng 8 2017

Lm từng câu thôi

27 tháng 7 2017

h) \(5^x+5^{x+2}=650\)

\(\Leftrightarrow5^x+5^x.5^2=650\)

\(\Leftrightarrow5^x\left(1+25\right)=650\)

\(\Leftrightarrow5^x.26=650\)

\(\Leftrightarrow5^x=25\)

\(\Leftrightarrow x=2\)

haizzz,đăng ít thôi,chứ nhìn hoa mắt quá =.=

1 tháng 8 2017

bây định làm j ở chỗ này vậy??? có j ib ns vs nhao chớ sao ns ở đây

11 tháng 7 2017

2) a) \(\left(x+\dfrac{4}{5}\right)^2=\dfrac{9}{25}\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{4}{5}=\dfrac{3}{5}\\x+\dfrac{4}{5}=-\dfrac{3}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{5}\\x=\dfrac{-7}{5}\end{matrix}\right.\) vậy \(x=\dfrac{-1}{5};x=\dfrac{-7}{5}\)

b) \(\left|x-\dfrac{3}{7}\right|=-2\) vì giá trị đối không âm được nên phương trình này vô nghiệm

c) điều kiện : \(x\ge-7\) \(\sqrt{x+7}-2=4\Leftrightarrow\sqrt{x+7}=4+2=6\)

\(\Leftrightarrow x+7=6^2=36\Leftrightarrow x=36-7=29\) vậy \(x=29\)

d) \(x^2-\dfrac{7}{9}x=0\Leftrightarrow x\left(x-\dfrac{7}{9}\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-\dfrac{7}{9}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{7}{9}\end{matrix}\right.\) vậy \(x=0;x=\dfrac{7}{9}\)

11 tháng 7 2017

1) tìm GTNN

a) \(B=\left|x-2017\right|+\left|x-20\right|\)

B \(\ge\left|x-2017-x+20\right|=\left|-1997\right|=1997\)

Dấu " = " xảy ra khi và chỉ khi 20 \(\le x\le2017\)

Vậy MinB = 1997 khi 20 \(\le x\le2017\)

b) \(C=\left|x-3\right|+\left|x-5\right|\)

\(C\ge\left|x-3-x+5\right|=\left|2\right|=2\)

Dấu " = " xảy ra khi 3 \(\le x\le5\)

Vậ MinC = 2 khi và chỉ khi 3 \(\le x\le5\)

c) \(C=\left|x^2+4\right|+3\)

Ta thấy \(x^2+4\ge0\) với mọi x

nên \(\left|x^2+4\right|+3=x^2+4+3=x^2+7\)\(\ge\) 7

Dấu " =" xảy ra khi x = 0

MinC = 7 khi và chỉ khi x = 0

28 tháng 10 2018

a) \(\left[\left(\dfrac{3}{5}\right)^2-\left(\dfrac{2}{5}\right)^2\right]\cdot X=\left(\dfrac{1}{5}\right)^3\)

\(\left(\dfrac{3}{5}-\dfrac{2}{5}\right)\left(\dfrac{3}{5}+\dfrac{2}{5}\right)\cdot X=\dfrac{1}{125}\)

\(\dfrac{1}{5}\cdot1\cdot X=\dfrac{1}{125}\)

\(X=\dfrac{1}{125}:\dfrac{1}{5}=\dfrac{1}{25}\)

b) \(1\dfrac{2}{5}\cdot x+\dfrac{3}{7}=\dfrac{-4}{5}\)

\(1\dfrac{2}{5}\cdot x=\dfrac{-4}{5}-\dfrac{3}{7}\)

\(1\dfrac{2}{5}\cdot x=-\dfrac{43}{35}\)

\(x=-\dfrac{43}{35}:1\dfrac{2}{5}=-\dfrac{43}{49}\)

c) \(\left(3x-2\right)^2=9\)

*Nếu \(9=3^2\) thì:

\(3x-2=3\)

\(3x=5\Rightarrow x=\dfrac{5}{3}\)

*Nếu \(9=\left(-3\right)^2\) thì

\(3x-2=-3\)

\(3x=-1\Rightarrow x=-\dfrac{1}{3}\)

d) \(\left|x+\dfrac{1}{3}\right|-4=-1\)

\(\left|x+\dfrac{1}{3}\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=3\\x+\dfrac{1}{3}=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=-\dfrac{10}{3}\end{matrix}\right.\)

Chúc bạn học giỏi.

28 tháng 10 2018

a)\(\dfrac{3^2-2^2}{5^2}.x=\dfrac{1}{5^3}\)

\(\Leftrightarrow\dfrac{5}{5^2}.x=\dfrac{1}{5^3}\)

\(\Leftrightarrow\dfrac{1}{5}.x=\dfrac{1}{5^3}\)

\(\Leftrightarrow x=\dfrac{1}{25}\)

b)\(\dfrac{7}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)

\(\Leftrightarrow\dfrac{7}{5}x=-\dfrac{43}{35}\)

\(\Leftrightarrow x=\dfrac{-43}{49}\)

c)\(9x^2-12x+4=9\)

\(\Leftrightarrow9x^2-12x-5=0\)

\(\Leftrightarrow9x^2-15x+3x-5=0\)

\(\Leftrightarrow3x\left(3x-5\right)+3x-5=0\)

\(\Leftrightarrow\left(3x-5\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

d)\(\left|x+\dfrac{1}{3}\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=3\\x+\dfrac{1}{3}=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=-\dfrac{10}{3}\end{matrix}\right.\)

11 tháng 11 2018

a, \(\dfrac{13}{32}+\dfrac{8}{24}+\dfrac{19}{32}+\dfrac{2}{3}\)

\(=\left(\dfrac{13}{32}+\dfrac{19}{32}\right)+\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\)

\(=\dfrac{32}{32}+\dfrac{3}{3}=1+1=2\)

b, \(\dfrac{3}{4}.36\dfrac{1}{5}-\dfrac{3}{4}.2\dfrac{1}{5}\)

\(=\dfrac{3}{4}.\left(36\dfrac{1}{5}-2\dfrac{1}{5}\right)\)

\(=\dfrac{3}{4}.\left[\left(36-2\right)+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)\right]\)

\(=\dfrac{3}{4}.34=\dfrac{102}{4}=26\)

19 tháng 11 2022

Bài 2:

a: x=27/10:9/5=27/10*5/9=135/90=3/2

b: =>|x|=1,75

=>x=1,75 hoặc x=-1,75

c: =>\(2-x=\sqrt[3]{25}\)

hay \(x=2-\sqrt[3]{25}\)

d: =>3^x-1*6=162

=>3^x-1=27

=>x-1=3

=>x=4

3 tháng 8 2017

a) \(x+\dfrac{3}{10}=\dfrac{-2}{5}\)

\(x=\dfrac{-2}{5}-\dfrac{3}{10}\)

\(x=\dfrac{-7}{10}\)

b) \(x+\dfrac{5}{6}=\dfrac{2}{5}-\left(-\dfrac{2}{3}\right)\)

\(x+\dfrac{5}{6}=\dfrac{2}{5}+\dfrac{2}{3}\)

\(x+\dfrac{5}{6}=\dfrac{16}{15}\)

\(x=\dfrac{16}{15}-\dfrac{5}{6}\)

\(x=\dfrac{7}{30}\)

c) \(1\dfrac{2}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)

\(\dfrac{7}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)

\(\dfrac{7}{5}x=-\dfrac{4}{5}-\dfrac{3}{7}\)

\(\dfrac{7}{5}x=\dfrac{-43}{35}\)

\(\Rightarrow x=\dfrac{-43}{49}\)

d) \(\left[x+\dfrac{3}{4}\right]-\dfrac{1}{3}=0\)

\(\left[x+\dfrac{3}{4}\right]=0+\dfrac{1}{3}\)

\(\left[x+\dfrac{3}{4}\right]=\dfrac{1}{3}\)

\(x=\dfrac{1}{3}-\dfrac{3}{4}\)

\(x=\dfrac{-5}{12}\)

e) \(\left[x+\dfrac{4}{5}\right]-\left(-3,75\right)=-\left(-2,15\right)\)

\(\left[x+\dfrac{4}{5}\right]+3,75=2,15\)

\(x+\dfrac{4}{5}=2,15-3,75\)

\(x+\dfrac{4}{5}=-\dfrac{8}{5}\)

\(x=\dfrac{-8}{5}-\dfrac{4}{5}\)

\(x=\dfrac{-12}{5}\)

f) \(\left(x-2\right)^2=1\)

\(\Rightarrow x=1\)

Sức chịu đựng có giới hạn -.-

3 tháng 8 2017

- Mình tiếp tục cho Nguyễn Phương Trâm nhé.

g, \(\left(2x-1\right)^3=-27\)

\(\Rightarrow\left(2x-1\right)^3=\left(-3\right)^3\)

\(\Rightarrow2x-1=-3\)

\(\Rightarrow2x=-2\)

=> \(x=-1\)

- Vậy x = -1

h,\(\dfrac{x-1}{-15}=-\dfrac{60}{x-1}\)

\(\Rightarrow\left(x-1\right)^2=-60.\left(-15\right)\)

\(\Rightarrow\left(x-1\right)^2=900 \)

\(\Rightarrow\left(x-1\right)^2=30^2\Rightarrow x-1=30\)

=> x = 31

i,\(x:\left(\dfrac{-1}{2}\right)^3=\dfrac{-1}{2}\)

=> \(x:\left(-\dfrac{1}{8}\right)=-\dfrac{1}{2}\)

\(\Rightarrow x=\dfrac{1}{16}\)

- Vậy x=\(\dfrac{1}{16}\)

j, \(\left(\dfrac{3}{4}\right)^5.x=\left(\dfrac{3}{4}\right)^7\)

\(\Rightarrow \left(\dfrac{3}{4}\right).x=\left(\dfrac{3}{4}\right)^2\)

\(\Rightarrow x=\left(\dfrac{3}{4}\right)^2:\dfrac{3}{4}\)

\(\Rightarrow x=\dfrac{3}{4}\)

- Vạy x = \(\dfrac{3}{4}\)

k, \(8^x:2^x=4\Rightarrow\left(8:2\right)^x=4\)

=>\(4^x=4\)

=> x = 1

- Vậy x = 1

bài 1)
a) \(\dfrac{11}{13}-\left(\dfrac{5}{42}-x\right)=-\left(\dfrac{15}{28}-\dfrac{11}{15}\right) \)
\(\left(\dfrac{5}{42}-x\right)=\dfrac{11}{13}+\dfrac{15}{28}-\dfrac{11}{15}\)
\(x=\dfrac{5}{42}-\dfrac{3541}{5460}=-\dfrac{413}{780}\)
b) \(\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|2,15\right|\)
\(\left|x+\dfrac{4}{15}\right|=-\left|2,15\right|+\left|3,75\right|=1,6\)
\(\Rightarrow x+\dfrac{4}{15}=1,6\) hoặc \(x+\dfrac{4}{15}=-1,6\)
\(\Rightarrow x=\dfrac{4}{3}\) hoặc \(x=-\dfrac{28}{15}\)
c) \(\dfrac{5}{3}-\left|x-\dfrac{3}{2}\right|=-\dfrac{1}{2}\)
\(\Rightarrow\left|x-\dfrac{3}{2}\right|=\dfrac{5}{3}+\dfrac{1}{2}=\dfrac{13}{6}\)
\(\Rightarrow x-\dfrac{3}{2}=\dfrac{13}{6}\) hoặc \(x-\dfrac{3}{2}=-\dfrac{13}{6}\)
\(\Rightarrow x=\dfrac{11}{3}\) hoặc \(x=-\dfrac{2}{3}\)
d)\(\left(x-\dfrac{2}{3}\right).\left(2x-\dfrac{3}{2}\right)=0\)
\(\Rightarrow x-\dfrac{2}{3}=0\) hoặc \(2x-\dfrac{3}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{3}{4}\end{matrix}\right.\)
3) a) \(\left(x^{^2}-4\right)^{^2}+\left(x+2\right)^{^2}=0\)
\(\left(x^{^2}-4\right)^{^2}\ge0,\left(x+2\right)^{^2}\ge0\) nên :
\(\left\{{}\begin{matrix}x^{^2}-4=0\\x+2=0\end{matrix}\right.\Rightarrow x=\pm2\)

b) \(\left(x-y\right)^{^2}+\left|y+2\right|=0\)
\(\left\{{}\begin{matrix}\left(x-y\right)^{^2}\ge0\\\left|y+2\right|\ge0\end{matrix}\right.\) nên \(\left\{{}\begin{matrix}x-y=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-y=0\\y=-2\end{matrix}\right.\Rightarrow x=-2;y=-2\)
c) \(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)
\(\left\{{}\begin{matrix}\left|x-y\right|\ge0\\\left|y+\dfrac{9}{25}\right|\ge0\end{matrix}\right.\) nên \(\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Rightarrow y=-\dfrac{9}{25};x=-\dfrac{9}{25}\)
d) \(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=\left(-\dfrac{1}{4}\right)-\left|y\right|\)
\(\Rightarrow\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|+\left|y\right|=-\dfrac{1}{4}\)
\(\left\{{}\begin{matrix}\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|\ge0\\\left|y\right|\ge0\end{matrix}\right.\)\(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|+\left|y\right|=-\dfrac{1}{4}\) nên không tồn tại x,y thỏa mãn đề bài .