Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.
Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.
Bài 1:Tính cả ước âm thì là số `12`
Bài 2:
Gọi `ƯCLN(7n+10,5n+7)=d(d>0)(d in N)`
`=>7n+10 vdots d,5n+7 vdots d`
`=>35n+50 vdots d,35n+49 vdots d`
`=>1 vdots d`
`=>d=1`
`=>` 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau.
Các phần còn lại thì bạn làm tương tự câu a.
gọi 2 số lẻ liên tiếp là 2K + 1 và 2K + 3
gọi d là ƯCLN( 2K+1;2K+3)
ta có ƯCLN(2k+1;2k+3)=d \(\Rightarrow\)2k+1 chia hết cho d 2k + 3 chia hết cho d
suy ra 2k+3 - 2k - 1 = 2 chia hết cho d
mà số lẻ ko chia hết cho 2
suy ra d = 1
vậy 2 số lẻ liên thiếp là 2 số nguyên tố cùng nhau
Gọi d là UCLN(2n+1;14n+5)
->(14n+5)-(2n+1)chia hết cho d
->(14n+5)-7(2n+1) chia hết cho d
->14n+5-14n-1 chia hết cho d
->n+5-n-1
4 chia hết cho d
d thuộc {1;-1;2;-2;4;-4}
Sau đó thì bạn dùng phương pháp thử chọn nha.
gọi d là ƯC(2n + 3; 5n + 7)
=> 2n + 3 ⋮ d và 5n + 7 ⋮ d
=> 10n + 15 và 10n + 14 ⋮ d
=> 10n + 15 - 10n - 14 ⋮ d
=> 1 ⋮ d
=> d = 1
=> 2x + 3 và 5n + 7 là 2 số nguyên tố cùng nhau