Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$P(0)=d$ lẻ
$P(1)=a+b+c+d$ lẻ, mà $d$ lẻ nên $a+b+c$ chẵn. Do đó 3 số này có thể nhận giá trị lẻ, lẻ, chẵn hoặc chẵn, chẵn, chẵn.
Giả sử $P(x)$ có nghiệm nguyên $m$. Khi đó:
$P(m)=am^3+bm^2+cm+d$
Nếu $m$ chẵn thì $am^3+bm^2+cm+d$ lẻ cho $d$ lẻ nên $P(m)\neq 0$
Nếu $m$ lẻ: Do $a,b,c$ nhận giá trị lẻ, chẵn, chẵn hoặc chẵn, chẵn, chẵn nên $am^3+bm^2+cm$ đều chẵn. Kéo theo $P(m)=am^3+bm^2+cm+d$ lẻ
$\Rightarrow P(m)\neq 0$
Tóm lại $P(m)\neq 0$
$\Rightarrow x=m$ không là nghiệm của $P(x)$. Do đó điều giả sử là sai.
Ta có đpcm.
Gọi nghiệm nguyên của P(x) là: k
ta có: \(ak^3+bk^2+ck+d=0\)
\(k.\left(ak^2+bk+k\right)=-d\)( *)
ta có: \(P_{\left(1\right)}=a+b+c+d\)
\(P_{\left(0\right)}=d\)
mà P(1); P(0) là các số lẻ
=> a+b+c+d và d là các số lẻ
mà d là số lẻ
=> a+b+c là số chẵn
Từ (*) => k thuộc Ư(d)
mà d là số lẻ
=> k là số lẻ
=> \(k^3-1;k^2-1;k-1\)là các số chẵn
\(\Rightarrow a\left(k^3-1\right)+b\left(k^2-1\right)+c\left(k-1\right)\) là số chẵn
\(=\left(ak^3+bk^2+ck\right)-\left(a+b+c\right)\)
mà a+b+c là số chẵn
\(\Rightarrow ak^3+bk^2+c\) là số chẵn
Từ (*) => d là số chẵn ( vì d là số lẻ)
=> P(x) không thể có nghiệm nguyên
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
Thay b=3a+c vào f(x) ta được:
f(x)=ax3+(3a+c)x2+cx+d
=ax3+3ax2+cx2+cx+d
Suy ra: f(1).f(2)=(a.13+3a.12+c.12+c.1+d)[a.(-2)3+3a.(-2)2+c.(-2)2+c.(-2)+d]
=(a+3a+c+c+d)(-8a+12a+4c-2c+d)
=(4a+2c+d)(4a+2c+d)
=(4a+2c+d)2
Mà a,b,c,d là số nguyên nên: f(1).f(2) là bình phương của 1 số nguyên
Bài 2:
- Thay x=0 vào P(x) ta được:
P(0)=d => d là số lẻ.
- Thay x=1 vào P(x) ta được:
P(1)=a+b+c+d =>a+b+c+d là số lẻ mà d lẻ nên a+b+c là số chẵn.
- Gọi e là nghiệm của P(x), thay e vào P(x) ta được:
P(e)=ae3+be2+ce+d=0
=>ae3+be2+ce=-d
=>e(ae2+be+c)=-d
=>e=\(\dfrac{-d}{ae^2+be+c}\).
Ta thấy: -d là số lẻ, ae2+be+c là số chẵn nên -d không thể chia hết cho
ae2+be+c.
- Vậy P(x) không thể có nghiệm là số nguyên.
thanks bn rất nhiều !!!!!