Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left|x\right|\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow A=\left|x\right|+\frac{6}{13}\ge\frac{6}{13}\)
Dấu "=" xảy ra "=" |x| = 0 <=> x = 0
Vậy Amin = 6/13 khi và chỉ khi x = 0
b) Ta có: \(\left|x+2,8\right|\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow B=\left|x+2,8\right|-7,9=\left|x+2,8\right|+\left(-7,9\right)\ge-7,9\)
Dấu "=" xảy ra <=> |x+2,8| = 0 <=> x + 2,8 = 0 <=> x = -2,8
Vậy Bmin = -7,9 khi và chỉ khi x = -2,8
c) Ta có: \(\left|x+1,5\right|\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow C=\left|x+1,5\right|-5,7=\left|x+1,5\right|+\left(-5,7\right)\ge-5,7\)
Dấu "=" xảy ra <=> |x+1,5| = 0 <=> x + 1,5 = 0 <=> x = -1,5
Vậy Cmin = -5,7 khi và chỉ khi x = -1,5
a, Ta có :
\(A=\left|x\right|+\dfrac{6}{13}\)
Với \(\forall x\) ta có :
\(\left|x\right|\ge0\)
\(\Leftrightarrow\left|x\right|+\dfrac{6}{13}\ge\dfrac{6}{13}\)
\(\Leftrightarrow A\ge\dfrac{6}{13}\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\)
Vậy \(A_{Min}=\dfrac{6}{13}\Leftrightarrow x=0\)
b, Ta có :
\(\left|x+2,8\right|\ge0\)
\(\Leftrightarrow\left|x+2,8\right|-7,9\ge-7,9\)
\(\Leftrightarrow B\ge7,9\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x+2,8\right|=0\Leftrightarrow x=-2,8\)
Vậy \(B_{Min}=-7,9\Leftrightarrow x=-2,8\)
Ta có : \(\left|x\right|\ge0\forall x\in R\)
=> \(\left|x\right|+\frac{4}{7}\ge\frac{4}{7}\forall x\in R\)
=> GTNN của biểu thức là \(\frac{4}{7}\) khi x = 0
Ta có : |x - 2010| \(\ge0\forall x\in R\)
|x - 1963| \(\ge0\forall x\in R\)
Nên |x - 2010| + |x - 1963| \(\ge0\forall x\in R\)
Mà x ko thể đồng thời có 2 giá trị nên
GTNN của biểu thức là : 2010 - 1963 = 47 khi x = 2010 hoặc 1963
Bài 1
\(a,\left|x\right|=-\left|-\frac{5}{7}\right|=>x\in\varnothing\)
\(b,\left|x+4,3\right|-\left|-2,8\right|=0\)
\(=>\left|x+4,3\right|-2,8=0\)
\(=>\left|x+4,3\right|=0+2,8=2,8\)
\(=>x+4,3=\pm2,8\)
\(=>\hept{\begin{cases}x+4,3=2,8\\x+4,3=-2,8\end{cases}=>\hept{\begin{cases}x=-1,5\\x=-7,1\end{cases}}}\)
\(c,\left|x\right|+x=\frac{2}{3}\)
\(=>\hept{\begin{cases}x+x=\frac{2}{3}\\-x+x=\frac{2}{3}\end{cases}}=>\hept{\begin{cases}x=\frac{1}{3}\\x=-\frac{1}{3}\end{cases}}\)
Bài 1 :
a) Ta thấy : \(\left(x^2-9\right)^2\ge0\)
\(\left|y-2\right|\ge0\)
\(\Leftrightarrow A=\left(x^2-9\right)^2+\left|y-2\right|-1\ge-1\)
Dấu " = " xảy ra :
\(\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\in\left\{3;-3\right\}\\y=2\end{cases}}\)
Vậy \(Min_A=-1\Leftrightarrow\left(x;y\right)\in\left\{\left(3;2\right);\left(-3;2\right)\right\}\)
b) Ta thấy : \(B=x^2+4x-100\)
\(=\left(x+4\right)^2-104\ge-104\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy \(Min_B=-104\Leftrightarrow x=-4\)
c) Ta thấy : \(C=\frac{4-x}{x-3}\)
\(=\frac{3-x+1}{x-3}\)
\(=-1+\frac{1}{x-3}\)
Để C min \(\Leftrightarrow\frac{1}{x-3}\)min
\(\Leftrightarrow x-3\)max
\(\Leftrightarrow x\)max
Vậy để C min \(\Leftrightarrow\)\(x\)max
p/s : riêng câu c mình không tìm được C min :( Mong bạn nào giỏi tìm hộ mình
Bài 2 :
a) Ta thấy : \(x^2\ge0\)
\(\left|y+1\right|\ge0\)
\(\Leftrightarrow3x^2+5\left|y+1\right|-5\ge-5\)
\(\Leftrightarrow C=-3x^2-5\left|y+1\right|+5\le-5\)
Dấu " = " xảy ra :
\(\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
Vậy \(Max_A=-5\Leftrightarrow\left(x;y\right)=\left(0;-1\right)\)
b) Để B max
\(\Leftrightarrow\left(x+3\right)^2+2\)min
Ta thấy : \(\left(x+3\right)^2\ge0\)
\(\Leftrightarrow\left(x+3\right)^2+2\ge2\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy \(Max_B=\frac{1}{2}\Leftrightarrow x=-3\)
c) Ta thấy : \(\left(x+1\right)^2\ge0\)
\(\Leftrightarrow x^2+2x+1\ge0\)
\(\Leftrightarrow-x^2-2x-1\le0\)
\(\Leftrightarrow C=-x^2-2x+7\le8\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy \(Max_C=8\Leftrightarrow x=-1\)
Bài 2 :
Ta có : \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\in R\)
\(\Rightarrow A=\frac{3}{4}+\left(x-\frac{1}{2}\right)^2\ge\frac{3}{4}\forall x\in R\)
Vậy Amin = \(\frac{3}{4}\) dấu "=" chỉ sảy ra khi x = \(\frac{1}{2}\)
\(A=\left(x+\frac{4}{7}\right)^{24}+\frac{-12}{293}\)
Ta có \(\left(x+\frac{4}{7}\right)^{24}\ge0\forall x\Rightarrow\left(x+\frac{4}{7}\right)^{24}+\frac{-12}{293}\ge\frac{-12}{293}\)
Đẳng thức xảy ra <=> x + 4/7 = 0 => x = -4/7
=> MinA = -12/293 <=> x = -4/7
\(B=-\left(x+\frac{1}{6}\right)^{26}-\left(x+y+\frac{3}{8}\right)^{422}+5,98\)
Ta có \(\hept{\begin{cases}-\left(x+\frac{1}{6}\right)^{26}\le0\forall x\\-\left(x+y+\frac{3}{8}\right)^{442}\le0\forall x,y\end{cases}}\Rightarrow-\left(x+\frac{1}{6}\right)^{26}-\left(x+y+\frac{3}{8}\right)+5,98\le5,98\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+\frac{1}{6}=0\\x+y+\frac{3}{8}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{6}\\y=-\frac{5}{24}\end{cases}}\)
=> MaxB = 5, 98 <=> x = -1/6 ; y = -5/24
a) Ta có: A = |x| + 6/13
Mà |x| >= 0
=> A >= 6/13
Dấu "=" xảy ra <=> x = 0
Vậy Amin = 6/13 <=> x = 0
b) Ta có: B = |x + 2,8| - 7,9
Mà |x + 2,8| >= 0
=> B >= -7,9
Dấu "=" xảy ra <=> x + 2,8 = 0 => x = -2,8
Vậy Bmin = -7,9 <=> x = -2,8