Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: \(\left.\begin{matrix} \frac{x}{4} = \frac{y}{5} & & \\ \frac{y}{5} = \frac{z}{2} & & \end{matrix}\right\}\)
=> \(\frac{x}{4} = \frac{y}{5} = \frac{z}{2}\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4} = \frac{y}{5} = \frac{z}{2} = \frac{x - y + z}{4 - 5 + 2}= \frac{98}{1}= 98\)
=> x = 98 * 4 = 392
y = 98 * 5 = 490
z = 196
Vậy x = 392, y = 490, z = 196
Bài 3:
Gọi x,y lần lượt là số cây trồng của lớp 7A, 7B
Theo đề bài ta có: \(\frac{x}{4} = \frac{y}{5}\) và y - x = 12
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4} = \frac{y}{5}= \frac{y - x}{5 - 4}= \frac{12}{1}= 12\)
=> x = 12 * 4 = 48
y = 12 * 5= 60
Vậy lớp 7A trồng 48 cây
.......lớp 7B trồng 60 cây
Bài này chỉ tìm được \(GTNN\) thôi bạn nhé!
\(F=\dfrac{1}{2}\left(x-1\right)^2+\dfrac{1}{3}\\ \text{Do }\left(x-1\right)^2\ge0\forall x\\ \Rightarrow\dfrac{1}{2}\left(x-1\right)^2\ge0\forall x\\ F=\dfrac{1}{2}\left(x-1\right)^2+\dfrac{1}{3}\ge\dfrac{1}{3}\forall x\)
Dấu \("="\) xảy ra khi :
\(\left(x-1\right)^2=0\\ \Leftrightarrow x-1=0\\ \Leftrightarrow x=1\)
Vậy \(F_{\left(Min\right)}=3\) khi \(x=1\)
Ta nhận thấy \(2x+3y\) và \(x^2+y^2\) là các thành phần của các đẳng thức Bunhiacốpxki \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\) với \(a=2,b=3.\)
Theo bất đẳng thức trên :
\(\left(2x+3y\right)^2\le\left(2^2+3^2\right).52\Rightarrow\left(2x+3y\right)^2\le13.13.4\)
\(\Rightarrow\left|2x+3y\right|\le26\Rightarrow2x+3y\le26.\)Vậy \(MAX_A=26\Leftrightarrow\begin{cases}\frac{x}{2}=\frac{y}{3}\\2x+3y\ge0\end{cases}\)
Thay \(y=\frac{3x}{2}\) vào \(x^2+y^2=52,\)ta được \(x^2+\frac{9x^2}{4}=52\).Giai phương trình này được : \(x=\pm4\).
Với \(x=4\) thì \(y=6\) , thõa mãn ( 2 ) . Với \(x=-4\) thì \(y=-6\), không thõa mãn (2 )
1)x=1,5
2)-5
3)14
4)0 có cap a;b thoa man de bai(điền số 0 vào)
5)-2011,đúng rồi đấy
6)Pmin=3,7
tick nhé,tớ thi violymic rồi
a, 1, Vì |x - 2019| ≥ 0 ; (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 + (-2) ≥ (-2) => A ≥ -2
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-2019=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2019\\y=1\end{cases}}\)
Vậy GTNN A = -2 khi x = 2019 và y = 1
2, Ta có: |x - 3| = |3 - x|
Vì |x - 3| + |x + 4| ≥ |x - 3 + x + 4| = |1| = 1
=> C ≥ 1 - 5 => C ≥ -4
Dấu " = " xảy ra <=> (3 - x)(x + 4) ≥ 0
+) Th1: \(\hept{\begin{cases}3-x\ge0\\x+4\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Rightarrow}-4\le x\le3\)
+) Th2: \(\hept{\begin{cases}3-x\le0\\x+4\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge3\\x\le-4\end{cases}}\)(Vô lý)
Vậy GTNN của C = -4 khi -4 ≤ x ≤ 3
b,
1, Vì |x2 - 25| ≥ 0 => 4|x2 - 25| ≥ 0 => 32 - 4|x2 - 25| ≤ 32 = 9
Dấu " = " xảy ra <=> x2 - 25 = 0 <=> x2 = 25 <=> x = 5 hoặc x = -5
Vậy GTLN B = 9 khi x = 5 hoặc x = -5
2, Đk: x ≠ 5
\(D=\frac{x-4}{x-5}=\frac{\left(x-5\right)+1}{x-5}=1+\frac{1}{x-5}\)
Để D mang giá trị lớn nhất <=> \(\frac{1}{x-5}\)mang giá trị lớn nhất <=> x - 5 mang giá trị nhỏ nhất <=> x - 5 = 1 <=> x = 6
=> \(D=1+1=2\)
Vậy GTLN của D = 2 khi x = 6
a) \(F=2\left|3x-2\right|-1\)
Vì \(\left|3x-2\right|\ge0\forall x\Rightarrow2\left|3x-2\right|\ge0\)
\(\Rightarrow2\left|3x-2\right|-1\ge-1\)
''='' xảy ra khi \(3x-2=0\Rightarrow x=\dfrac{2}{3}\)
=> \(F_{min}=-1\)
b) \(G=x^2+3\left|y-2\right|-1\)
Ta có: \(\left\{{}\begin{matrix}x^2\ge0\forall x\\3\left|y-2\right|\ge0\forall y\end{matrix}\right.\)
=> \(x^2+3\left|y-2\right|\ge0\Rightarrow x^2+3\left|y-2\right|-1\ge-1\)
''='' xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Vậy \(G_{min}=-1\)
\(A=2\left|3x-2\right|-1\ge-1\)
Dấu "=" xảy ra khi : \(x=\dfrac{2}{3}\)
\(B=x^2+3\left|y-2\right|-1\ge-1\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Ta có: \(-\left|1,5-x\right|\le0\forall x\)
\(\Rightarrow-\left|1,5-x\right|-2\le-2\forall x\)
Dấu \("="\) xảy ra khi \(\left|1,5-x\right|=0\)
\(\Rightarrow1,5-x=0\Rightarrow x=1,5\)
Vậy \(Min_A=-2\) khi \(x=1,5.\)
-2