Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. A=x2-3x+5=x2-1.5x-1.5x+2.25+2.75=x(x-1.5)-1.5(x-1.5)+2.75=(x-1.5)2+2.75
ta có (x-1.5)2 > hoặc = 0 với mọi x . Suy ra (x-1.5)2 +2.75 > hoặc = 2.75 với mọi x.
Dấu "=" xảy ra khi x-1.5=0 suy ra x=1.5
Vậy Amin=2.75 khi x=1.5
a)4x2-4x+3
=[(2x)2-4x+1]+2
=(2x+1)2+2 \(\ge\)2 với mọi x
Vậy GTNN của 4x2-4x+3 là 2 tại
(2x+1)2+2=2
<=>(2x+1)2 =0
<=>2x+1 =0
<=>x =\(\frac{-1}{2}\)
b)-x2+2x-3
=(-x2+2x-1)-2
= -(x2-2x+1)-2
=-(x-1)2-2 \(\le\)-2
Vậy GTLN của -x2+2x-3 là -2 tại :
-(x-1)2-2=-2
<=>-(x-1)2 =0
<=>x-1 =0
<=>x =1
\(A=2x^2+10x-1\)
\(=2\left(x^2+5x-\frac{1}{2}\right)\)
\(=2\left(x^2+2x.\frac{5}{2}+\frac{25}{4}-\frac{27}{4}\right)\)
\(=2\left[\left(x^2+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)
\(=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge\frac{-27}{2}\)(Vì \(\left(x+\frac{5}{2}\right)^2\ge0\))
Dấy " = " xảy ra khi :
\(x+\frac{5}{2}=0\)
\(\Leftrightarrow x=\frac{-5}{2}\)
Vậy GTNN của A là \(\frac{-27}{2}\)khi \(x=\frac{-5}{2}\)
Hk tốt ~
Bài 1:Tìm giá trị nhỏ nhất
A= x2+4x+100
A= (x\(^2\)+4x+4)+96
A= (x\(^2\)+2.x.2+2\(^2\))+96
A= (x+2)\(^2\)+96
Vì (x+2)\(^2\) ≥0 ∀ x
⇒(x+2)\(^2\)+96 ≥ 96 ∀ x
Vậy min A = 96 ⇔ x+2=0
⇔ x = -2
B1 có bạn làm rồi
B2, B=-2.(x\(^2\)-3x+2)
=-2.(x\(^2\)-2.\(\frac{3}{2}\)x+\(\frac{9}{4}\)+2-\(\frac{9}{4}\))
=-2.[(x-\(\frac{3}{2}\))\(^2\)-\(\frac{1}{4}\)]
=-2.(x-\(\frac{3}{2}\))\(^2\)+\(\frac{1}{2}\)
Có -2.(x-\(\frac{3}{2}\))\(^2\)≤0∀x
⇒-2.(x-\(\frac{3}{2}\))\(^2\)+\(\frac{1}{2}\)≤\(\frac{1}{2}\)∀x
Dấu = xảy ra⇔x=\(\frac{3}{2}\)
GTLN của B=\(\frac{1}{2}\)
1,A=(x2-6x+9)+2
=(x-3)2+2
ta thấy (x-3)2>=0 với mọi x
=>(x-3)2+2>=2 với mọi x
hay A>=2
dấu "="xảy ra x-3=0<=>x=3
vậy MinA=2 khi x=3
ý b sai đầu bài bạn nhé
C=-(x2-5x)
=-(x2-5x+25/4)+25/4
=-(x-5/2)2+25/4
ta thấy -(x-5/2)2<=0 với mọi x
=>-(x-5/2)2+25/4 <=25/4 với mọi x
hay C<=25/4
dấu "=" xảy ra khi x-5/2=0<=>x=5/2
vậy MaxC=25/4 khi x=5/2
k mk nha
a có A = x^2+2x+5 =(x^2+2x+1)+4=(x+1)^2+4 \(\ge\)4
Dấu bằng xảy ra <=>x+1=0 <=>x=-1
\(A=x^2+2x+5=x^2+2.x+1+4=\left(x+1\right)^2+4\ge4\)
Đẳng thức xảy ra khi: \(x+1=0\Rightarrow x=-1\)
Vậy giá trị nhỏ nhất của A là 4 khi x= -1
Bài 1:
a) $9x^2-2x-1=(3x)^2-2.3x.\frac{1}{3}+(\frac{1}{3})^2-\frac{10}{9}$
$=(3x-\frac{1}{3})^2-\frac{10}{9}$
$\geq 0-\frac{10}{9}=\frac{-10}{9}$
Vậy GTNN của biểu thức là $\frac{-10}{9}$. Giá trị này đạt tại $3x-\frac{1}{3}=0\Leftrightarrow x=\frac{1}{9}$
b)
$(2x-5)(x-1)=2x^2-7x+5=2(x^2-\frac{7}{2}x)+5$
$=2[x^2-2.\frac{7}{4}x+(\frac{7}{4})^2]-\frac{9}{8}$
$=2(x-\frac{7}{4})^2-\frac{9}{8}$
$\geq 2.0-\frac{9}{8}=-\frac{9}{8}$
Vậy GTNN của biểu thức là $\frac{-9}{8}$ tại $x=\frac{7}{4}$
Giúp em bài bất đẳng thức với ạ