Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (1)
\(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\dfrac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\)(2)
Từ (1) và (2) suy ra: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
b.M = \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{50^2}\right)\)
= \(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{2499}{2500}\)
= \(\dfrac{1.3.2.4.3.5...49.51}{2^2.3^2.4^2...50^2}\)
\(\dfrac{51}{2.50}=\dfrac{51}{100}\)
Lời giải:
a)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow \left(\frac{a}{b}\right)^2=\left(\frac{b}{d}\right)^2=\frac{(a+c)^2}{(b+d)^2}(1)\)
Mặt khác, \(\frac{a}{b}=\frac{c}{d}\Rightarrow \frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}(2)\) (áp dụng tính chất dãy tỉ số bằng nhau)
Từ \((1),(2)\Rightarrow \frac{(a+c)^2}{(b+d)^2}=\frac{a^2+c^2}{b^2+d^2}\)
b) Vì \(1-\frac{1}{2^2};1-\frac{1}{3^2};...;1-\frac{1}{50^2}<1\) nên:
\(\left\{\begin{matrix} \left \{ 1-\frac{1}{2^2} \right \}=1-\frac{1}{2^2}\\ \left \{ 1-\frac{1}{3^2} \right \}=1-\frac{1}{3^2}\\ ....\\ \left \{ 1-\frac{1}{50^2} \right \}=1-\frac{1}{50^2}\end{matrix}\right.\)
\(\Rightarrow M=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)....\left(1-\frac{1}{50^2}\right)\)
\(\Leftrightarrow M=\frac{(2^2-1)(3^2-1)(4^2-1)....(50^2-1)}{(2.3....50)^2}\)
\(\Leftrightarrow M=\frac{[(2-1)(3-1)...(50-1)][(2+1)(3+1)...(50+1)]}{(2.3.4...50)^2}\)
\(\Leftrightarrow M=\frac{(2.3...49)(3.4.5...51)}{(2.3.4...50)^2}=\frac{(2.3.4...49)^2.50.51}{2.(2.3....49)^2.50^2}=\frac{50.51}{2.50^2}=\frac{51}{100}\)
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{3k+5}{3k-5}\)
\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{3k+5}{3k-5}\)
Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
b: \(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\left(\dfrac{b}{d}\right)^2\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
Do đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
c: \(\dfrac{a-b}{a+b}=\dfrac{bk-b}{bk+b}=\dfrac{k-1}{k+1}\)
\(\dfrac{c-d}{c+d}=\dfrac{dk-d}{dk+d}=\dfrac{k-1}{k+1}\)
Do đó: \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
\(\dfrac{3}{7}\approx0,43;\dfrac{15}{21}\approx0,71;\dfrac{-4}{5}=-0,8;\dfrac{-7}{13}=-0,54\)
2,\(-2,54=\dfrac{-127}{50};-2,03=\dfrac{-203}{100};0,25=\dfrac{1}{4}\)
Ta có: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Leftrightarrow\dfrac{a^2}{b^2}=\dfrac{\left(a+b+c\right)^2}{\left(b+c+d\right)^2}\)
\(\Leftrightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{\left(a+b+c\right)^2}{\left(b+c+d\right)^2}\)
\(\Leftrightarrow\dfrac{a}{d}=\dfrac{\left(a+b+c\right)^2}{\left(b+c+d\right)^2}\left(đpcm\right)\)
Chúc bạn học tốt!
Từ a/b=c/d⇒a/c=b/d
Áp dụng tính chất dãy tỉ số bằng nhau
a/c=b/d=a+b/c+d
⇒a^3/c^3=b^3/d^3=(a+b)^3/(c+d)^3 (1)
Từ a^3/c^3=b^3/d^3=a^3-b^3/c^3-d^3 (2)
Từ (1) và (2)
⇒(a+b)^3/(c+d)^3=a^3-b^3/c^3-d^3
a) \(\dfrac{a}{b}=\dfrac{c}{d}\)suy ra\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
ta có \(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
nên \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
b)đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) suy ra a=bk;c=dk
ta có \(\dfrac{a}{b+a}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\)(1)
\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\)(2)
Từ (1);(2) suy ra \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
c)ta có \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
suy ra \(\dfrac{2a}{2c}=\dfrac{5b}{5d};\dfrac{3a}{3c}=\dfrac{4b}{4d}\)
suy ra \(\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3a-4d}\)
nên \(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+3d}{3c-4d}\)
d)\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Rightarrow\left(\dfrac{a}{c}\right)^2=\left(\dfrac{b}{d}\right)^2=\left(\dfrac{a+c}{b+d}\right)^2\left(1\right)\)\(\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}\left(2\right)\)
từ (1);(2) suy ra \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
Đăng từng bài một thôi bạn!
1)\(\left(-\dfrac{5}{13}\right)^{2017}.\left(\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).\left(-\dfrac{5}{13}\right)^{2016}.\left(\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).\left(\dfrac{5}{13}\right)^{2016}.\left(\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).\left(\dfrac{5}{13}.\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).1^{2016}\)
\(=-\dfrac{5}{13}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow a=b=c\)
\(D=\left(\dfrac{a}{c}\right)^{2016}+\left(\dfrac{c}{b}\right)^{2017}+\left(\dfrac{b}{a}\right)^{2018}=1+1+1=3\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\dfrac{b}{a}=\dfrac{c}{b}=\dfrac{a}{c}=1\)
\(\Rightarrow D=\left(\dfrac{a}{b}\right)^{2016}+\left(\dfrac{c}{b}\right)^{2017}+\left(\dfrac{b}{a}\right)^{2018}=1^{2016}+1^{2017}+1^{2018}=1+1+1=3\)
Vậy, D = 3