Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hai số cần tìm là a;b
-Ta có:BCNN (a;b)=ab
=>ƯCLN(a;b)=ab;BCNN(a,b)=4320:360=12
-Gọi a=12m
b=12n(ƯCLN(m;n)=1
=>ab=12m.12n=4320
=>144mn=4320
=>mn=30
Ta tìm được (m;n)=(1;30) (2;15) (3;10) (5;6) (6;5) (10;3) (15;2) (30;1)
Lấy m;n nhân với 12,ta tim được (a;b)=(12;360) (14;180) (36;120) (60;72) (72;60) (120;36) (180;14) (360;12)
Vì ƯCLN (a,b).BCNN (a,b)=a.b nên ƯCLN (a,b) bằng:4320:360=12
= >ƯCLN (a,b)=12
+)Ta có ƯCLN (a,b)=12=>a chia hết cho 12,b chia hết cho 12
=> a=12m,b=12n và (m,n)=1
=> Có: (12m).(12n)=4320
144.mn=4320
mn=4320:144
mn=30
Vì (m,n)=1 nên ta tìm được (m,n)=(1;30) (30;1) (2;15) (15;2) (3;10) (10;3) (5;6) (6;5)
Ta lấy m,n nhân với 12 được:a,b=(12;360) (360;12) (24;180) (180;24) (36;120) (120;36) (60;72) (72;60)
BCNN là bò con nho nhỏ (đùa thôi), BCNN là bội chung nhỏ nhất
Bg
98 = 2.72
72 = 23.32
BCNN (98; 72) = 23.32.72 = 3528
Để tìm UCLN bạn thực hiện theo các bước sau
Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
Bước 2: Chọn ra các thừa số nguyên tố chung
Bước 3: Nhân số nguyên tố chung với tích mũ chung nhỏ nhất trong 2 số sẽ được UCLN cần tìm.
Ước chung lớn nhất của hai hay nhiều số là số lớn nhất trong tập hợp các ước chung của các số đó.
Bội chung nhỏ nhất (BCNN) của hai hay nhiều số là số lớn nhất khác 0 trong tập hợp các bội chung của các số đó.
+ Cho ƯCLN (a, b) = d. Nếu chia a và b cho d thì thương của chúng là những số nguyên tố cùng nhau.
* Mối quan hệ đặc biệt giữa ƯCLN của 2 số a, b (kí hiệu (a,b)) và BCNN của 2 số a, b (kí hiệu [a, b]) với tích của 2 số a và b là:
a . b = (a, b) . [a, b].
* Chứng minh: Đặt (a, b) = d => a = md và b = nd. Với m,n∈N∗m,n∈N∗, (m. n) = 1. Từ (I) => ab = mnd2; [a, b] = mnd => (a, b) . [a, b] = d . (mnd) = mnd2 = ab.
Vậy ab = (a, b) [a, b]. (ĐPCM)
Đọc kĩ nhé!
Bài 1;Tìm BC(63,35,105) thông qua BCNN
ta có : \(\hept{\begin{cases}63=3^2.7\\35=5.7\\105=3.5.7\end{cases}\Rightarrow BCNN\left(63,35,105\right)=3^2.5.7=315}\)
vậy \(BC\left(63,35,105\right)=B\left(315\right)\)
Bài 2:x thuộc số tự nhiên,biết:
x chia hết cho 11,x chia hết cho 12,x chia hết cho 15,x chia hết cho 18 và 200<x<500
X là Bội chung của 11,12,15 và 18
mà : \(\hept{\begin{cases}12=2^2.3\\15=3.5\\18=2.3^2\end{cases}\Rightarrow BCNN\left(11,12,15,18\right)=11.2^2.3^2.5=1980}\) vậy không có số x thỏa mãn ?? ( có lẽ bạn thêm thừa điều kiện chia hết cho 11 , nếu vậy x là bội của 180 thế nên x = 360)
Bài 3;Học sinh lớp 6A khi xếp thành hang 2,3,4 hoặc hàng 8 đều vừa đủ.Biết số học sinh của lớp 6A từ 38 đến 60 học sinh.Tính học sinh của lớp 6A.
số học sinh là bội chung của 2,3,4 và 8 hay nó là bội của 24
mà số học sinh nằm trong khoảng 38 đến 60 nên số học sinh là 48 học sinh
1a)8
b)24
c)72
d)120
2)a)459
b)720
c)300