\(a\in Z\) sao cho \(a^4-4a^2+4n-1\) là số nguyên...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2020

Bài 1: Chắc đề là \(a^4-4a^2+4a-1\)

Ta có: \(a^4-4a^2+4a-1=a^4-\left(4a^2-4a+1\right)=a^4-\left(2a-1\right)^2=\left(a^2-2a+1\right)\left(a^2+2a-1\right)=\left(a-1\right)^2\left(a^2+2a-1\right)\)

là số nguyên tố \(\Leftrightarrow\left[{}\begin{matrix}\left(a-1\right)^2=1\\a^2+2a-1=1\end{matrix}\right.\) ( tự giải tiếp)

Bài 2: Làm mẫu một bài thôi nhé

a) Đặt A = \(2x^2+2y^2+2xy-8x-10y+2025\)

\(2A=4x^2+4y^2+4xy-16x-20y+4050\)

\(=\left(2x\right)^2+2.2x\left(y-4\right)+\left(y-4\right)^2-\left(y-4\right)^2+4y^2-20y+4050\)

\(=\left(2x+y-4\right)^2-\left(y^2-8y+16\right)+4y^2-20y+4050\)

\(=\left(2x+y-4\right)^2+3y^2-12y+4034=\left(2x+y-4\right)^2+3\left(y^2-4y+4\right)+4022=\left(2x+y-4\right)^2+3\left(y-2\right)^2+4022\ge4022\forall x,y\)

Vậy min A = 4022 \(\Leftrightarrow\left\{{}\begin{matrix}2x+y-4=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

13 tháng 10 2020

thanks bạn !

25 tháng 11 2016

mấy bn ơi, giúp mk nhanh vs nha!!!!!!!!!!!

25 tháng 11 2016

a/ A = 2x2 + y2 - 2xy - 2x + 3

= (x2 - 2xy + y2) + (x2 - 2x + 1) + 2

= (x - y)2 + (x - 1)2 + 2\(\ge2\)

15 tháng 1 2019

Bài 2 :

a) \(P=x^2+y^2+xy+x+y\)

\(2P=2x^2+2y^2+2xy+2x+2y\)

\(2P=x^2+2xy+y^2+x^2+2x+1+y^2+2y+1-2\)

\(2P=\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2\)

\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2}{2}\)

\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-1\le-1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}}\)

Mình nghĩ đề phải là tìm GTLN của \(P=x^2+y^2+xy+x-y\)hoặc đổi dấu x và y thì dấu "=" mới xảy ra đc

17 tháng 1 2019

@ Phương ơi ! Cái dòng \(P=\)cuối ấy . Chỗ đấy là \(\ge-1\)em nhé!

hoc tot de lam lien doi nho chua.

7 tháng 4 2018

\(A=2x^2+y^2-2xy-2x+3\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)

\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)

Mà \(\left(x-y\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)

Vậy Min A = 2 khi x=y=1

20 tháng 6 2019

phân tích đa thức thành nhân tử đi

20 tháng 6 2019

1a) A = \(x^2-4x+2023=\left(x-2\right)^2+2019\)

Ta luôn có: (x - 2)2 \(\ge\)\(\forall\)x

 => (x - 2)2 + 2019 \(\ge\)2019 \(\forall\)x

Hay A \(\ge\)\(\forall\)x

Dấu "=" xảy ra khi : (x - 2)2 = 0 => x - 2 = 0 => x = 2

Nên Amin = 2019 khi x = 2