Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2, ta thấy:
\(\dfrac{2008}{2009}< \dfrac{2008}{2009+2010}\left(1\right)\)
\(\dfrac{2009}{2010}< \dfrac{2009}{2009+20010}\left(2\right)\)
từ (1) và (2) cộng vế với vế ta đc :\(\dfrac{2008}{2009}+\dfrac{2009}{20010}< \dfrac{2008}{2009+2010}+\dfrac{2009}{2009+2010}=\dfrac{2008+2009}{2009+2010}\)
A=\(\dfrac{2009^{2010}+1}{2009^{2009}+1}\)
2009A=\(\dfrac{(2009^{2010}+1)+0}{2009^{2010}+1}\)
= 1+\(\dfrac{0}{2009^{2010}+1}\)= 1+0 =1
B=\(\dfrac{2009^{2011}-2}{2009^{2010}-2}\)
2009B=\(\dfrac{2009^{2011}-1}{2009^{2011}-2009}\)
=\(\dfrac{(2009^{2011}-1)-0}{2009^{2011}-2009}\)
= \(1-\dfrac{0}{2009^{2011}-2009}\)
=1-0= 1
Vì 1=1\(\Rightarrow A=B\)
Ta có : A = 2009^2010+1/2009^2009+1
Suy ra: 1/2009 A = 1 - 2008/2009^2010+2009 (1)
Lại có:B = 2009^2011 - 2 / 2009^2010 - 2
Suy ra : 1/2009 B = 1 + 4016/2009^2011-4018 (2)
Vì 1 - 2008/2009^2010+2009 < 1 + 4016/2009^2011-4018 (3)
Từ (1);(2) và (3) suy ra : A<B
1.
\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\left(\frac{1}{2^{100}}+\frac{1}{2^{100}}\right)\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)
cứ làm như vậy ta được :
\(=1+1=2\)
2. Ta có :
\(\frac{2008+2009}{2009+2010}=\frac{2008}{2009+2010}+\frac{2009}{2009+2010}\)
vì \(\frac{2008}{2009}>\frac{2008}{2009+2010}\); \(\frac{2009}{2010}>\frac{2009}{2009+2010}\)
\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}>\frac{2008+2009}{2009+2010}\)
Ta có :
\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
Vì :
\(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)
\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)
\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)
Nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(\Rightarrow\)\(A>B\)
Vậy \(A>B\)
Ta có: \(B=\frac{2008+2009+2010}{2009+2010+2011}\)
\(=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
Vì \(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)
\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)
\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)
nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008+2009+2010}{2009+2010+2011}\)
hay A > B
Vậy A > B
\(b)\) Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}=\frac{2009\left(2009^{2009}+1\right)}{2009\left(2009^{2010}+1\right)}=\frac{2009^{2009}+1}{2009^{2010}+1}\)
Vậy \(\frac{2009^{2009}+1}{2009^{2010}+1}>\frac{2009^{1010}-2}{2009^{2011}-2}\)
Chúc bạn học tốt ~
Àk mình còn thiếu một điều kiện nữa xin lỗi nhé :
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Bạn thêm vào nhé
a, (x + 1) + (x + 4) + ... + (x + 28) = 155
x + 1 + x + 4 + ... + x + 28 = 155
(x + x + x + ... + x) + (1 + 4 + ... + 28) = 155
x . 10 + 145 = 155
x . 10 = 155 - 145
x . 10 = 10
x = 10 : 10
x = 1
\(Q=\dfrac{1}{2011}+\dfrac{2}{2010}+\dfrac{3}{2009}+...+\dfrac{2010}{2}+\dfrac{2011}{1}\)
\(Q=\left(1+\dfrac{2}{2011}\right)\left(1+\dfrac{2}{2010}\right)+\left(1+\dfrac{3}{2009}\right)+...+\left(1+\dfrac{2010}{2}\right)+1\)
\(Q=\dfrac{2012}{2011}+\dfrac{2012}{2010}+\dfrac{2012}{2009}+...+\dfrac{2012}{2}+\dfrac{2012}{2012}\)
\(Q=2012.\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)
\(\Rightarrow\dfrac{P}{Q}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}}{2012.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)}=\dfrac{1}{2012}\)
1.
ta có: 2009A= (2009^2010+ 2009)/ (2009^2010+1)= (2009^10+1+2008)/(2009^2010+1)=1+ [2008/(2009^2010+1)]
làm tương tự như trên ta được :
2009B=1-[4016/(2009^2011-2)]
lại có:
2009A= .............(nt) > 1
2009B=...........<1
=>2009A>2009B
=>A>B
câu 2 và 3 thì làm sao bạn