\(\dfrac{2009^{2009}+1}{2009^{2010}+1}\)Và B=\(\dfr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2019

1.

ta có: 2009A= (2009^2010+ 2009)/ (2009^2010+1)= (2009^10+1+2008)/(2009^2010+1)=1+ [2008/(2009^2010+1)]

làm tương tự như trên ta được :

2009B=1-[4016/(2009^2011-2)]

lại có:

2009A= .............(nt) > 1

2009B=...........<1

=>2009A>2009B

=>A>B

27 tháng 1 2019

câu 2 và 3 thì làm sao bạn

17 tháng 3 2018

2, ta thấy:

\(\dfrac{2008}{2009}< \dfrac{2008}{2009+2010}\left(1\right)\)

\(\dfrac{2009}{2010}< \dfrac{2009}{2009+20010}\left(2\right)\)

từ (1) và (2) cộng vế với vế ta đc :\(\dfrac{2008}{2009}+\dfrac{2009}{20010}< \dfrac{2008}{2009+2010}+\dfrac{2009}{2009+2010}=\dfrac{2008+2009}{2009+2010}\)

15 tháng 3 2017

A=\(\dfrac{2009^{2010}+1}{2009^{2009}+1}\)

2009A=\(\dfrac{(2009^{2010}+1)+0}{2009^{2010}+1}\)

= 1+\(\dfrac{0}{2009^{2010}+1}\)= 1+0 =1

B=\(\dfrac{2009^{2011}-2}{2009^{2010}-2}\)

2009B=\(\dfrac{2009^{2011}-1}{2009^{2011}-2009}\)

=\(\dfrac{(2009^{2011}-1)-0}{2009^{2011}-2009}\)

= \(1-\dfrac{0}{2009^{2011}-2009}\)

=1-0= 1

Vì 1=1\(\Rightarrow A=B\)

16 tháng 4 2017

Ta có : A = 2009^2010+1/2009^2009+1

Suy ra: 1/2009 A = 1 - 2008/2009^2010+2009 (1)

Lại có:B = 2009^2011 - 2 / 2009^2010 - 2

Suy ra : 1/2009 B = 1 + 4016/2009^2011-4018 (2)

Vì 1 - 2008/2009^2010+2009 < 1 + 4016/2009^2011-4018 (3)

Từ (1);(2) và (3) suy ra : A<B

26 tháng 5 2018

1.

\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)

\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\left(\frac{1}{2^{100}}+\frac{1}{2^{100}}\right)\)

\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)

cứ làm như vậy ta được :

\(=1+1=2\)

26 tháng 5 2018

2. Ta có :

\(\frac{2008+2009}{2009+2010}=\frac{2008}{2009+2010}+\frac{2009}{2009+2010}\)

vì \(\frac{2008}{2009}>\frac{2008}{2009+2010}\)\(\frac{2009}{2010}>\frac{2009}{2009+2010}\)

\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}>\frac{2008+2009}{2009+2010}\)

26 tháng 2 2018

Ta có : 

\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)

Vì : 

\(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)

\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)

\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)

Nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)

\(\Rightarrow\)\(A>B\)

Vậy \(A>B\)

26 tháng 2 2018

Ta có: \(B=\frac{2008+2009+2010}{2009+2010+2011}\)

                  \(=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)

Vì \(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)

    \(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)

   \(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)

nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008+2009+2010}{2009+2010+2011}\)

hay A > B

Vậy A > B 

9 tháng 3 2018

\(b)\)  Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}=\frac{2009\left(2009^{2009}+1\right)}{2009\left(2009^{2010}+1\right)}=\frac{2009^{2009}+1}{2009^{2010}+1}\)

Vậy \(\frac{2009^{2009}+1}{2009^{2010}+1}>\frac{2009^{1010}-2}{2009^{2011}-2}\)

Chúc bạn học tốt ~

9 tháng 3 2018

Àk mình còn thiếu một điều kiện nữa xin lỗi nhé : 

Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)

Bạn thêm vào nhé 

5 tháng 8 2018

a, (x + 1) + (x + 4) + ... + (x + 28) = 155

x + 1 + x + 4 + ... + x + 28 = 155

(x + x + x + ... + x) + (1 + 4 + ... + 28) = 155

x . 10 + 145 = 155

x . 10 = 155 - 145

x . 10 = 10

x = 10 : 10

x = 1

22 tháng 8 2017

\(Q=\dfrac{1}{2011}+\dfrac{2}{2010}+\dfrac{3}{2009}+...+\dfrac{2010}{2}+\dfrac{2011}{1}\)

\(Q=\left(1+\dfrac{2}{2011}\right)\left(1+\dfrac{2}{2010}\right)+\left(1+\dfrac{3}{2009}\right)+...+\left(1+\dfrac{2010}{2}\right)+1\)

\(Q=\dfrac{2012}{2011}+\dfrac{2012}{2010}+\dfrac{2012}{2009}+...+\dfrac{2012}{2}+\dfrac{2012}{2012}\)

\(Q=2012.\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)

\(\Rightarrow\dfrac{P}{Q}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}}{2012.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\right)}=\dfrac{1}{2012}\)