Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Goi x,y,z lan luot la so thu nhat nhat, thu 2 va thu 3 can tim. Theo de ta co:
2x = 3 y = 5z => x lon nhat , z be nhat
Va: x-z = 72
=> \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-z}{\frac{1}{2}-\frac{1}{5}}=\frac{72}{\frac{3}{10}}=240\)
=> y = 240 . 1/3 = 80
Vay: So thu 2 la 80
Gọi số thứ nhất là a ; số thứ hai là b ; số thứ 3 là c
Theo bài ra ta có :
a2 + b2 + c2 = 8125 (1)
\(1b=\frac{2}{5}a=\frac{3}{4}c\)(2)
Từ (2) ta có : \(\hept{\begin{cases}1b=\frac{2}{5}a\\\frac{2}{5}a=\frac{3}{4}c\end{cases}\Rightarrow\hept{\begin{cases}\frac{b}{\frac{2}{5}}=\frac{a}{1}\\\frac{a}{\frac{3}{4}}=\frac{c}{\frac{2}{5}}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{b}{\frac{2}{5}}=\frac{a}{1}\\\frac{a}{1}=\frac{c}{\frac{8}{15}}\end{cases}\Rightarrow}\frac{b}{\frac{2}{5}}}=\frac{a}{1}=\frac{c}{\frac{8}{15}}\)
Đặt \(\frac{b}{\frac{2}{5}}=\frac{a}{1}=\frac{c}{\frac{8}{15}}=k\)
\(\Rightarrow b=\frac{2}{5}k;a=k;c=\frac{8}{15}k\)(3)
Thay (3) vào (1) ta có :
\(\left(\frac{2}{5}k\right)^2+k^2+\left(\frac{8}{15}k\right)^2=8125\)
\(\Rightarrow\left(\frac{2}{5}\right)^2.k^2+k^2+\left(\frac{8}{15}\right)^2.k^2=8125\)
\(\Rightarrow\frac{4}{25}.k^2+k^2+\frac{64}{225}.k^2=8125\)
\(\Rightarrow k^2.\frac{13}{9}=8125\)
\(\Rightarrow k^2=5625\)
\(\Rightarrow k=\pm75\)
Nếu k = 75
=> \(\hept{\begin{cases}a=75.1=75\\b=75.\frac{2}{5}=30\\c=75.\frac{8}{15}=40\end{cases}}\)
Nếu k = - 75
=> \(\hept{\begin{cases}a=-75.1=-75\\b=-75.\frac{2}{5}=-30\\c=-75.\frac{8}{15}=-40\end{cases}}\)
Vậy các cặp 3 số (a;b;c) thỏa mãn là : (-75 ; - 30 ; - 40) ; (75;30;40)
gọi số thứ nhất ; số thứ 2; số thứ 3 lần lượt là a; b; c
theo đề bài: \(\frac{a}{b}=\frac{14}{15};\frac{b}{c}=\frac{9}{10};2a+3b-4c=19\)
=> \(\frac{a}{14}=\frac{b}{15}\);
\(\frac{b}{9}=\frac{c}{10}\Rightarrow\frac{9}{15}.\frac{b}{9}=\frac{9}{15}.\frac{c}{10}\Rightarrow\frac{b}{15}=\frac{3c}{50}\)
=> \(\frac{a}{14}=\frac{b}{15}=\frac{3c}{50}=k\)
=> a = 14.k ; b = 15.k ; c = \(\frac{50}{3}\).k. Thay vào 2a + 3b - 4c = 19
=> 2.14k + 3.15.k - 4.\(\frac{50}{3}\).k = 19
<=> 84.k + 135.k - 200.k = 57 <=> 19.k = 57 <=> k = 3
Vậy a = 14.k = 14.3 = 42
b = 15.k = 15.3 = 45
c = 50/3 . k = 50/3 . 3 = 50
Vậy....
\(\frac{2a}{3}=\frac{3b}{4}\Rightarrow8a=9b\Rightarrow\frac{a}{9}=\frac{b}{8}\Rightarrow\frac{a^2}{81}=\frac{b^2}{64}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a^2}{81}=\frac{b^2}{64}=\frac{a^2-b^2}{81-64}=\frac{68}{17}=4\)
\(\frac{a^2}{81}=4\Rightarrow a=\sqrt{324}=18\)
\(\frac{b^2}{64}=4\Rightarrow b=\sqrt{256}=16\)
Vậy \(a=18;b=16\)
Chúc bạn học tốt ^^
Gọi 2 số cần tìm là a và b :
\(\frac{2}{3}a=\frac{3}{4}b\)
\(\Rightarrow a=\frac{3}{4}b:\frac{2}{3}\Rightarrow a=\frac{9}{8}b\Rightarrow a^2=\left(\frac{9}{8}b\right)^2\Rightarrow a^2=\left(\frac{9}{8}\right)^2.b^2\Rightarrow a^2=\frac{81}{64}b^2\)Ta có :
\(a^2-b^2=68\Rightarrow\frac{81}{64}b^2-b^2=68\Rightarrow\frac{17}{64}b^2=68\Rightarrow b^2=68:\frac{17}{64}\Rightarrow b^2=16\Rightarrow b=4\)
Vậy \(a=\frac{81}{64}\) và \(b=4\)
Cho hàm số y= f(x) =4x^3-2x. CMR với mọi x thì f(x)= -f(x). Giúp mình với
Nguyễn Đức Anh ơi nếu bạn muốn hỏi thì bạn phải ấn vô "Gửi câu hỏi" chứ
\(5^{300}=\left(5^3\right)^{100}=125^{100}\)
\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
vì \(125< 243\) nên \(5^{300}< 3^{500}\)