Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2;A=\left(\frac{x}{x^2-4}+\frac{1}{x+2}-\frac{2}{x-2}\right):\left(\frac{1-x}{x+2}\right)\)
\(ĐKXĐ:\hept{\begin{cases}x^2-4\ne0\\1-x\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne\pm2\\x\ne1\end{cases}}\)
\(a,A=\left(\frac{x}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}-\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{x+2}{1-x}\)
\(A=\left(\frac{x+x-2-2x-4}{\left(x+2\right)\left(x-2\right)}\right).\frac{x+2}{1-x}\)
\(A=\frac{-6}{\left(x+2\right)\left(x-2\right)}.\frac{x+2}{1-x}=\frac{-6}{\left(x-2\right)\left(1-x\right)}\)
b, Khi x = -4
\(A=\frac{-6}{\left(-4-2\right)\left(1+4\right)}=\frac{-6}{-6.5}=\frac{1}{5}\)
1:
a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)
\(=4x^2-20x+25-4x^2-12x\)
=-32x+25
b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)
\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)
c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)
\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)
\(=\left(-3\right)^2+5\left(2x-3\right)\)
\(=9+10x-15=10x-6\)
2:
a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)
\(=9x^2-12x+4-5x^2+20x+4x-4\)
\(=4x^2+12x\)
b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)
\(=27-x^3+x^3-9x^2+27x-27\)
\(=-9x^2+27x\)
c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)
\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)
\(=-5\left(x^2-16\right)=-5x^2+80\)
a) \(=6a-3+15-5a=a+12\)
b) \(=25x-12x+4+35-14x=-x+39\)
d) \(=2ab+8a^2-b^2-4ab+2ab-6a^2=2a^2-b^2\)
e) \(=x+x^2-x^3+x^4-x^5+1+x-x^2+x^3-x^4=-x^5+2x+1\)
f) \(=6y^3-3y^2+y-y+y^2-y^3-y^2+y=5y^3-3y^2+y\)
a) 3( 2a -1) +5( 3-a)
= 3. 2a -3.1 +5. 3- 5.a
= 6a -3+ 15-5a
=(6a -5a )+ (-3+ 15)
b) 25x - 4(3x - 1) +7(5 - 2x)
= 25x -4.3x + 4.1 + 7.5 - 7.2
=25x - 12x + 4 +35 - 14x
= (25x-12x-14x)+(4+35)
= -x=39
c) -12x3 -x1-2x-18x2
= -36x-x-2x-36x
= -75x
d) (2a-b)(b+4a)+2a(b-3a)
= 2ab+2a4a-bb-b4a+2ab-2a3b
= 2ab+8a2-b2-4ab+2ab-6a2
=(2ab-4ab+2ab)+(8a2-6a2)-b2
= 2a2-b2
e) (x+1)(2+x-x2+x3-x4)
= (x+1)(2-2x)
= x2-x2x+1.2-1.2x
=(2x-2x)-2x2+2
= -2x2+2
\(\left(x+4\right)^2-81=0\Leftrightarrow\left(x+4\right)^2-9^2=0\)
\(\Leftrightarrow\left(x+4+9\right)\times\left(x+4-9\right)=0\)
\(\Leftrightarrow\left(x+13\right)\times\left(x-5\right)=0\)
\(\left[{}\begin{matrix}x+13=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=5\end{matrix}\right.\)
Bài 8:
Ta có: \(A=-x^2+2x+4\)
\(=-\left(x^2-2x-4\right)\)
\(=-\left(x^2-2x+1-5\right)\)
\(=-\left(x-1\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=1
\(a,\left(2a-3\right)\left(a+1\right)+\left(a^2+6a+9\right):\left(a+3\right)\\ =2a^2-a-3+\left(a+3\right)^2:\left(a+3\right)\\ =2a^2-a-3+a+3\\ =2a^2\\ b,\left(3x-5y\right)\left(-xy\right)^2-3x^2y^2+4x^2y^3\\ =3x^3y^2-5x^2y^3-3x^2y^2+4x^2y^3\\ =3x^3y^2-3x^2y^2-x^2y^3\\ c,x\left(x-2\right)^2-\left(x+2\right)\left(x^2-2x+4\right)+4x^2\\ =x^3-4x^2+4x-x^3-8+4x^2\\ =4x-8\)
Bài 2:
a: Ta có: \(A=\left(x+1\right)^3+\left(x-1\right)^3\)
\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1\)
\(=2x^3+6x\)
b: Ta có: \(B=\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)
\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)
\(=27x-55\)