Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(B=5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)+2\left(5-3x\right)^2\)
\(=5\left(4x^2-4x+1\right)+\left(4x-4\right)\cdot\left(x+3\right)+2\left(25-30x+9x^2\right)\)
\(=20x^2-20x+5+4x^2+12x-4x-12+50-60+18x^2\)
\(=42x^2-72x+43\)
2) \(C=\left(2a^2+2a+1\right)\left(2a^2-2a+1\right)-\left(2a+1\right)^2\)
\(=4a^4-4a^3+2a^2+4a^3-4a^2+2a+2a^2-2a+1-\left(4a^2+4a+1\right)\)
\(=4a^4+2a^2-4a^2+2a^2+1-4a^2-4a-1\)
\(=4a^4-4a^2-4a\)
3) Sky Sơn Tùng làm đúng rồi nhé.
4) \(E=\left(x^2-5x+1\right)^2+2\left(5x-1\right)\left(x^2-5x+1\right)\left(5x-1\right)^2\)
\(=x^4+27x^2+1-10x^3+250x^5-1400x^4+1030x^3-302x^2+40x-2\)
\(=-1399x^4-275x^2-1+1020x^3+250x^5+40x\)
5) \(F=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2\)
\(=\left[a^2+b^2-c^2-\left(a^2-b^2+c^2\right)\right]\cdot\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\)
\(=\left(a^2+b^2-c^2-a^2+b^2-c^2\right)\cdot2a^2\)
\(=\left(2b^2-2c^2\right)\cdot2a^2\)
\(=2\left(b^2-c^2\right)\cdot2a^2\)
\(=2\left(b-c\right)\left(b+c\right)\cdot2a^2\)
\(=2\cdot2a^2\cdot\left(b-c\right)\left(b+c\right)\)
\(=4a^2\cdot\left(b-c\right)\left(b+c\right)\)
6) \(G=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)
\(=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+\left(-c\right)^2+2ab-2ac-2bc-2\left(a^2+2ab+b^2\right)\)
\(=a^2+b^2+c^2+2ab+a^2+b^2+\left(-c\right)^2+2ab-2a^2-4ab-2b^2\)
\(=0+0+c^2+0+c^2\)
\(=2c^2\)
7) \(H=\left(a+c\right)\left(a-c\right)-\left(a-b-c\right)\left(a-b+c\right)+b\left(b-2x\right)\)
\(=a^2-c^2-\left[\left(a-b\right)^2-c^2\right]+b^2-2bx\)
\(=a^2-c^2-\left(a^2-2ab+b^2-c^2\right)+b^2-2bx\)
\(=a^2-b^2-a^2+2ab-b^2+c^2+b^2-2bx\)
\(=2ab-2bx\)
\(D=\left(9x-1\right)^2+\left(1-5x\right)^2+2\left(9x-1\right)\left(1-5x\right)=\left(9x-1+1-5x\right)^2=\left(4x\right)^2=16x^2\)
\(a,-5x\left(x-3\right)\left(2x+4\right)-\left(x+3\right)\left(x-3\right)+\left(5x-2\right)\left(3x+4\right)\)
\(=-5x\left(2x^2-x-12\right)-\left(x^2-9\right)+15x^2+20x-6x-8\)
\(=-10x^3+5x^2+60x-x^2+9+15x^2+20x-6x-8\)
\(=-10x^3+19x^2+74x+1\)
\(b,\left(4x-1\right)x\left(3x+1\right)-5x^2.x\left(x-3\right)-\left(x-4\right)x\left(x-5\right)\)\(-7\left(x^3-2x^2+x-1\right)\)
\(=\left(4x^2-x\right)\left(3x+1\right)-5x^4-15x^3-\left(x^2-4x\right)\left(x-5\right)\)\(-7x^3+14x^2-7x+7\)
\(=12x^3+x^2-x-5x^4-15x^3-x^3+9x^2+20x\)\(-7x^3+14x^2-7x+7\)
\(=-5x^4-11x^3+24x^2+12x+7\)
\(c,\left(5x-7\right)\left(x-9\right)-\left(3-x\right)\left(2-5x\right)-2x\left(x-4\right)\)
\(=5x^2-52x+63-6+17x-5x^2-2x^2+8x\)
\(=-2x^2-27x+57\)
\(d,\left(5x-4\right)\left(x+5\right)-\left(x+1\right)\left(x^2-6\right)-5x+19\)
\(=5x^2+21x-20-x^3-x^2+6x+6-5x+19\)
\(=-x^3+4x^2+22x+5\)
\(e,\left(9x^2-5\right)\left(x-3\right)-3x^2\left(3x+9\right)-\left(x-5\right)\left(x+4\right)-9x^3\)
\(=9x^3-27x^2-5x+15-9x^3-27x^2-x^2+x+20-9x^3\)
\(=-9x^3-55x^2+4x+35\)
\(g,\left(x-1\right)^2-\left(x+2\right)^2\)
\(=x^2-2x+1-x^2-4x-4\)
\(=-6x-3\)
a) 5.(2x-1)2+4.(x-1).(x+3-2).(5-3x)2
=20x2-20x+5+36x4-120x3+64x2+120x-100
=36x4+(-20x+120x)+(5-100)+(64x2+20x2)-120x3
=36x4+100x-95+84x2-120x3
b,c,d bn tự tính nhé bậc cao qá nên khó tính
A= (6x-2)^2 + (2-5x)^2+2(6x-2)(2-5x)
= (6x-2)^2 +2(6x-2)(2-5x)+ (2-5x)^2
\(=\left(6x-2+2-5x\right)^2=x^2\)
B= (2a^2+2a+1)(2a^2-2a+1)-(2a^2+1)^2
\(=\left(2a^2+1\right)^2-4a^2-\left(2a^2+1\right)^2=4a^2\)
C=(x+3)(x^2-3x+9)-(54+x^3)
\(=\left(x^3+27\right)-54-x^3=27\)
D=(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)
\(=\left(2x+y\right)^3-\left(2x-y\right)^3\)
E=(a+b)^2-(a-b)^2
\(=\left(a+b+a-b\right)\left(a+b-a+b\right)=2a.2b=4ab\)
Secret Personv: thật.CTV lạ z
\(C=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3-27-54-x^3=-81\)
Bài 1:
a) Ta có: \(\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)
\(=4x^2-4x+1+4\left(x^2+2x-3\right)-2\left(25-30x+9x^2\right)\)
\(=4x^2-4x+1+4x^2+8x-12-50+60x-18x^2\)
\(=-10x^2+64x-61\)
b) Ta có: \(\left(2a^2+2a+1\right)\left(2a^2-2a+1\right)-\left(2a^2+1\right)^2\)
\(=\left(2a^2+1\right)^2-\left(2a\right)^2-\left(2a^2+1\right)^2\)
\(=-4a^2\)
c) Ta có: \(\left(9x-1\right)^2+\left(1-5x\right)^2+2\left(9x-1\right)\left(1-5x\right)\)
\(=\left(9x-1+1-5x\right)^2\)
\(=\left(4x\right)^2=16x^2\)
d)
Sửa đề: \(\left(x^2+5x-1\right)^2+2\left(5x-1\right)\left(x^2+5x-1\right)+\left(5x-1\right)^2\)
Ta có: \(\left(x^2+5x-1\right)^2+2\left(5x-1\right)\left(x^2+5x-1\right)+\left(5x-1\right)^2\)
\(=\left(x^2+5x-1+5x-1\right)^2\)
\(=\left(x^2+10x-2\right)^2\)
\(=x^4+100x^2+4+20x^3-40x-4x^2\)
\(=x^4+20x^3+96x^2-40x+4\)
e) Ta có: \(x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
\(=x\left(x^2-1\right)-\left(x^3+1\right)\)
\(=x^3-x-x^3-1\)
=-x-1
f) Ta có: \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x\left(x^2-16\right)-\left(x^4-1\right)\)
\(=x^3-16x-x^4+1\)