Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn chép lại đề nhé
a/ \(=\left(x+y\right)^2-4x^2y^2=\left(x+y+2xy\right)\left(x+y-2xy\right)\)
b/ \(=\left(2bc+b^2+c^2-a^2\right)\left(2bc-b^2-c^2+a^2\right)\)
\(=\left[\left(b+c\right)^2-a^2\right]\left[-\left(b+c\right)^2+a^2\right]\)
\(=\left(b+c-a\right)\left(b+c+a\right)^2\left(a-b-c\right)\)
c/ \(=2a^2+2b^2-2c^2+4ab=2\left[\left(a^2+b^2+2ab\right)-c^2\right]\)
\(=2\left(a+b-c\right)\left(a+b+c\right)\)
d/ \(=\left(4x^2-25\right)^2-9\left(4x^2-20x+25\right)\)
\(=\left(4x^2-25\right)^2-9\left(4x^2+25\right)+180x\)
tới đây bạn đặt a= 4x^2 -25 rồi làm típ nha, mình lười quá ><
e/ tương tự câu d nha bạn
f/ \(=a^4\left(a^2-1\right)+2a^2\left(a+1\right)\)
\(=a^4\left(a-1\right)\left(a+1\right)+2a^2\left(a+1\right)\)
\(=a^2\left(a+1\right)\left(a^2+2\right)\)
g/ đặt \(a=3x^2+3x+2\) khi đó biểu thức trở thành
\(a^2-\left(a+4\right)^2=a^2-a^2-8a-16\)
\(=-8a-16=-8\left(3x^2+3x+2-8\right)=-8\left(3x^2+3x-6\right)\)
\(=-24\left(x^2+x-2\right)=-24\left(x-1\right)\left(x+2\right)\)
xong rùi nha bn. Chúc bn hc tốt (xin lỗi tại có mấy câu mình lười nha)
\(x^2-4x^2y^2+y^2+2xy\)
\(=\left(x^2+2xy+y^2\right)-4x^2y^2\)
\(=\left(x+y\right)^2-4x^2y^2\)
\(=\left(x-2xy+y\right)\left(x+2xy+y\right)\)
a)
\(=x^2\left(2x+3\right)+\left(2x+3\right)\)
\(=\left(x^2+1\right)\left(2x+3\right)\)
b)
\(=a\left(a-b\right)+a-b\)
\(=\left(a+1\right)\left(a-b\right)\)
c)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left(x+1-y\right)\left(x+1+y\right)\)
d)
\(=x^3\left(x-2\right)+10x\left(x-2\right)\)
\(=x\left(x^2+10\right)\left(x-2\right)\)
e)
\(=x\left(x^2+2x+1\right)\)
\(=x\left(x+1\right)^2\)
f)
\(=y\left(x+y\right)-\left(x+y\right)\)
\(=\left(y-1\right)\left(x+y\right)\)
a,2x3+3x2+2x+3
=(2x3+2x)+(3x2+3)
=2x(x2+1)+3(x2+1)
=(x2+1)(2x+3)
b,a2-ab+a-b
=(a2-ab)+(a-b)
=a(a-b)+(a-b)
=(a-b)(a+1)
c,2x2+4x+2-2y2
=2(x2+2x+1-y2)
=2[(x2+2x+1)-y2 ]
=2[(x+1)2-y2 ]
=2(x+1-y)(x+1+y)
d,x4-2x3+10x2-20x
=(x4-2x3)+(10x2-20x)
=x3(x-2)+10x(x-2)
=(x-2)(x3+10x)
=(x-2)[x(x2+10)]
e,x3+2x2+x
=x(x2+2x+1)
=x(x+1)2
f,xy+y2-x-y
=(xy+y2)-(x-y)
=y(x+y)-(x+y)
=(x+y)(y-1)
a) x4-4x3+4x2
= x2(x2-4x+4)
= x2(x-2)2
b) 2ab2-a2b-b3
= -b(-2ab+a2+b2)
=-b(a-b)2
e) x3+3x2-3x-1
= x3-x2+4x2-4x+x-1
=(x3-x2)+(4x2-4x)+(x-1)
=x2(x-1)+4x(x-1)+(x-1)
(x-1)(x2+4x+1)
f) x3-3x2-3x+1
=x3+x2-4x2-4x+x+1
=(x3+x2)-(4x2+4x)+(x+1)
=x2(x+1)-4x(x+1)+(x+1)
=(x+1)(x2-4x+1)
g)x3-4x2+4x-1
=x3-x2-3x2+3x+x-1
=(x3-x2)-(3x2-3x)+(x-1)
=x2(x-1)-3x(x-1)+(x-1)
=(x-1)(x2-3x+1)
a) \(=\left(x-5\right)\left(2+x+5-2x-1\right)=\left(x-5\right)\left(6-x\right)\)
e) \(=\left(ab^3c^2-a^2b^2c^2\right)+\left(ab^2c^3-a^2bc^3\right)=ab^2c^2\left(b-a\right)+abc^3\left(b-a\right)=abc^2\left(b-a\right)\left(b+c\right)\)
Bài 1:
a) 25x2 - 10xy + y2 = (5x - y)2
b) 81x2 - 64y2 = (9x)2 - (8y)2 = (9x - 8y)(9x + 8y)
c) 8x3 + 36x2y + 54xy2 + 27y3
= 8x3 + 27y3 + 36x2y + 54xy2
= (2x + 3y)(4x2 - 6xy + 9y2) + 18xy(2x + 3y)
= (2x + 3y)(4x2 - 6xy + 18xy + 9y2)
= (2x + 3y)(4x2 + 12xy + 9y2)
= (2x + 3y)(2x + 3y)2 = (2x + 3y)3
c) (a2 + b2 - 5)2 - 4(ab + 2)2 = (a2 + b2 - 5)2 - 22(ab + 2)2
= (a2 + b2 - 5)2 - (2ab + 4)2
= (a2 + b2 - 5 - 2ab - 4)(a2 + b2 - 5 + 2ab + 4)
= (a2 - 2ab + b2 - 9)(a2 + 2ab + b2 - 1)
= \(\left [ (a - b)^{2} - 3^{2} \right ]\)\(\left [ (a + b)^{2} - 1\right ]\)
= (a - b - 3)(a - b + 3)(a + b - 1)(a + b + 1)
pn đăng mỗi lần vài bài thôi chứ đăng nhìn ngán lắm
Bài 2:
a) 2x3 + 3x2 + 2x + 3
= 2x3 + 2x + 3x2 + 3
= 2x(x2 + 1) + 3(x2 + 1)
= (x2 + 1)(2x + 3)
b)x3z + x2yz - x2z2 - xyz2
= xz(x2 + xy - xz - yz)
= \(xz\left [ x(x + y) - z(x + y) \right ]\)
= xz(x + y)(x - z)
c) x2y + xy2 - x - y
= xy(x + y) - (x + y)
= (x + y)(xy - 1)
d) 8xy3 - 5xyz - 24y2 + 15z
= 8xy3 - 24y2 - 5xyz + 15z
= 8y2(xy - 3) - 5z(xy - 3)
= (xy - 3)(8y2 - 5z)
e) x3 + y(1 - 3x2) + x(3y2 - 1) - y3
= x3 - y3 + y - 3x2y + 3xy2 - x
= (x - y)(x2 + xy + y2) - 3xy(x - y) - (x - y)
= (x - y)(x2 + xy + y2 - 3xy - 1)
= (x - y)(x2 - 2xy + y2 - 1)
= \((x - y)\left [ (x - y)^{2} - 1 \right ]\)
= (x - y)(x - y - 1)(x - y + 1)
câu f tương tự
4/ a/ Ta có \(x^2-2xy+y^2+a^2=\left(x-y\right)^2+a^2\)
Mà \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\a^2\ge0\end{cases}}\)=> \(\left(x-y\right)^2+a^2\ge0\)
=> \(x^2-2xy+y^2+a^2\ge0\)
Vậy \(x^2-2xy+y^2\)chỉ nhận những giá trị không âm.
b/ Ta có \(x^2+2xy+2y^2+2y+1=\left(x^2+2xy+y^2\right)+\left(y^2+2y+1\right)=\left(x+y\right)^2+\left(y+1\right)^2\)
Mà \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(y+1\right)^2\ge0\end{cases}}\)=> \(\left(x+y\right)^2+\left(y+1\right)^2\ge0\)
=> \(x^2+2xy+2y^2+2y+1\ge0\)
Vậy \(x^2+2xy+2y^2+2y+1\)chỉ nhận những giá trị không âm.
c/ Ta có \(9b^2-6b+4c^2+1=\left(3b-1\right)^2+4c^2\)
Mà \(\hept{\begin{cases}\left(3b-1\right)^2\ge0\\4c^2\ge0\end{cases}}\)=> \(\left(3b-1\right)^2+4c^2\ge0\)
=> \(9b^2-6b+4c^2+1\ge0\)
Vậy \(9b^2-6b+4c^2+1\)chỉ nhận những giá trị không âm.
d/ Ta có \(x^2+y^2+2x+6y+10=\left(x+1\right)^2+\left(y+3\right)^2\)
Mà \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)=> \(\left(x+1\right)^2+\left(y+3\right)^2\ge0\)
=> \(x^2+y^2+2x+6y+10\ge0\)
Vậy \(x^2+y^2+2x+6y+10\)chỉ nhận những giá trị không âm.
1/
a/ \(x^4-y^4=\left(x^2-y^2\right)\)
b/ \(\left(a+b\right)^3-\left(a-b\right)^3=\left(a+b-a+b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2b\left[a^2+2ab+b^2-\left(a^2-b^2\right)+\left(a^2-2ab+b^2\right)\right]\)
\(=2b\left(a^2+b^2\right)\)
c/ \(\left(a^2+2ab+b^2\right)+\left(a+b\right)\)
= \(\left(a+b\right)^2+\left(a+b\right)\)
= \(\left(a+b\right)\left(a+b+1\right)\)
a. x2y2+1-x2-y2
=x2.(y2-1)-(y2-1)
=(y2-1).(x2-1)
=(y-1)(y+1)(x-1)(y-1)
c. x^3+3x^2-3x-1
= (x-1).(x^2+x+1)+3x.(x-1)
=(x-1)(x^2+x+1+x-1)
=(x-1)(x^2+2x)
=x(x-1)(x+2)