Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xếp A và B cạnh nhau: 2 cách
Coi cặp AB như 1 bạn, kết hợp 8 bạn còn lại, có \(9!\) cách hoán vị
Xác suất: \(P=\dfrac{9!.2}{10!}=\dfrac{1}{5}\)
Chọn A
Đánh số ba bàn tròn có số chỗ ngồi lần lượt là 6, 7, 8 là bàn 1, bàn 2, bàn 3.
+) Xét phép thử: “Xếp ngẫu nhiên 21 học sinh vào ba bàn tròn 1, 2, 3 nói trên”.
Chọn 6 học sinh trong số 21 học sinh và xếp vào bàn 1 có cách.
Chọn 7 học sinh trong số 15 học sinh còn lại và xếp vào bàn 2 có cách.
Xếp 8 học sinh còn lại vào bàn 3 có 7! cách.
Suy ra số phần tử của không gian mẫu là
+) Gọi A là biến cố: “ Hai bạn Thêm và Quý luôn ngồi cạnh nhau ”.
Trường hợp 1: Hai bạn Thêm và Quý ngồi bàn 1.
Chọn 4 học sinh từ 19 học sinh còn lại có C 19 4 cách.
Xếp 4 học sinh vừa chọn và hai bạn Thêm, Quý vào bàn 1 có 4!.2! cách.
Chọn 7 học sinh từ 15 học sinh còn lại và xếp vào bàn 2 có cách.
Xếp 8 học sinh còn lại vào bàn 3 có 7! cách.
Số cách xếp thỏa mãn trường hợp 1 là:
Trường hợp 2: Hai bạn Thêm và Quý ngồi bàn 2.
Tương tự như trên, ta có số cách xếp thỏa mãn trường hợp 2 là
Trường hợp 3: Hai bạn Thêm và Quý ngồi bàn 3.
Tương tự như trên, ta có số cách xếp thỏa mãn trường hợp 3 là:
= C 19 4 . 4 ! . 2 ! . C 1 7 . 6 ! . 7 ! + C 19 5 . 5 ! . 2 ! . C 14 6 . 5 ! . 7 ! + C 19 6 . 6 ! . 2 ! . C 13 6 . 5 ! . 6 ! C 21 6 . 5 ! . C 15 7 . 6 ! . 7 ! = 1 10
xếp ngẫu nhiên 8 bạn học sinh vào 4 bàn có 8! cách 40320 cách
=> \(n\left(\Omega\right)=40320\)
Gọi A:" có đúng 2 bàn mà trong đó mỗi bàn gồm 1 nam và 1 nữ "
=> \(n\left(A\right)=C^1_4.C^1_4..4.C^1_3.C^1_3.3.C^2_2.2.C^2_2.1=3456\) cách
=> P(A)= 3456/40320 =3/35
1.
Không gian mẫu: \(8!\)
Xếp Quân Lâm cạnh nhau: \(2!\) cách
Coi cặp Quân-Lâm như 1 bạn, hoán vị với 6 bạn còn lại: \(7!\) cách
\(\Rightarrow2!.7!\) cách xếp thỏa mãn
Xác suất: \(P=\dfrac{2!.7!}{8!}=\dfrac{1}{4}\)
2.
Không gian mẫu: \(C_{12}^3\)
Lấy 3 bóng sao cho ko có bóng tốt nào (cả 3 đều là bóng ko tốt): \(C_4^3\) cách
\(\Rightarrow C_{12}^3-C_4^3\) cách lấy 3 bóng sao cho có ít nhất 1 bóng tốt
Xác suất: \(P=\dfrac{C_{12}^3-C_4^3}{C_{12}^3}=...\)
3.
Số tam giác bằng với số cách chọn 3 điểm từ 4 điểm nên có: \(C_4^3=...\) tam giác
4.
\(T_{\overrightarrow{v}}\left(E\right)=F\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}x=-3+1=-2\\y=5-2=3\end{matrix}\right.\) \(\Rightarrow\left(-2;3\right)\)
5.
Có 2 cạnh chéo nhau với AB là SC, SD
Đáp án A
Số cách để xếp 8 người vào bàn tròn là: 7!=5040
Để xếp sao cho hai nữ không ngồi cạnh nhau trước tiên ta xếp 5 nam trước: 4!=24
Giữa 5 nam có 5 chỗ trống, số cách để xếp 3 nữ vào 5 chỗ trống:
Vậy xác suất để xếp sao cho hai nữ không ngồi cạnh nhau là:
số cách ngồi của 10 người là: \(\)v=10!
gọi A là biến cố " Ba và An ngồi cạnh nhau"
ta có :
số cách xếp chỗ An là 10 cách
số cách xếp chỗ Ba là 2 cách ( vì 2 bạn ngồi cạnh nhau)
số cách xếp cho 8 người còn lại là :8!
=> số cách Ba và An ngồi cạnh nhau là : 10.2.8!=20.8!
=> n(A)=20.8!=> P(A)=\(\frac{20.8!}{10!}=\frac{20}{9.10}=\frac{2}{9}\)