Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a\()\)Gọi O là giao điểm hai đường chéo của hình chữ nhật ABCD . Dễ thấy : AM // DO
=> Tứ giác AMDB là hình thang
b\()\)Do AM // BD nên \(\widehat{OBA}=\widehat{MAE}(\text{hai giác đồng vị})\). Tam giác AOB cân ở O nên \(\widehat{OBA}=\widehat{OAB}\). Gọi I là giao điểm hai đường chéo của hình chữ nhật AEMF thì tam giác AIE cân ở I nên \(\widehat{IAE}=\widehat{IEA}\)
Từ các chứng minh trên suy ra : \(\widehat{FEA}=\widehat{OAB}\)do đó EF // AC \((1)\)
Mặt khác IP là đường trung bình của tam giác MAC nên IP // AC \((2)\)
Từ 1 và 2 => 3 điểm E,F,P thẳng hàng
c\()\)\(\Delta MAF~\Delta DBA(g-g)\Rightarrow\frac{MF}{FA}=\frac{AD}{AB}(\text{không đổi})\)
Bạn tham khảo nhé Bùi Quang Sang
Chúc bạn học tốt ~
Bài 1:
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
AMDB là hình thang
c/m":
goi AC giao voi BD tai I
tam giac MAC co IP la duong trung binh tam giac
=> IP // AM hay BD // AM (dpcm)
b/
vi AM // BD nen goc MAB = ABD (so le trong)
ma goc ABD = BAI (tam giac IAB can );
goi AM giao voi EF tai J
tam giac JAF can tai J
]=> goc MAB = JFA
=> JFA = IAB
=> EF // AC (2 goc so le tri\ong bang nhau )
ta can chung minh EP // AC nữa thi E; F; P thằng hàng do qua 1 diem co hai duong song song voi AC)
khi do ta chung minh EP la duong trung binh tam giac MCK ( K la giao cua ME va AC )
c/m E la trung diem cua KM
ta chung minh tam giac KAM can tai A
AE la duong cao (gt)
chung minh AE la phan giac
----- goc KAE = DAC ( doi dinh)
goc DAC = EAM ( cung phu voi goc MAB = IAB (cmt) )
=> AE dong thoi la phan giac
=> tam giac KAM can tai A
==>. dpcm
1) Vận tốc trung bình của người đó trên toàn bộ quãng đường AB là:
15 . \(\frac{1}{2}\) + 30 . \(\frac{1}{2}\)
\(\Rightarrow\) \(\frac{1}{2}\) . ( 15 + 30)
\(\Rightarrow\) \(\frac{1}{2}\) . 45
\(\Rightarrow\) 22,5