Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: DC=DI+IC
=>AD+BC=DI+IC
mà CI=BC
nên AD=DI
=>\(\widehat{DAI}=\widehat{DIA}\)
=>\(\widehat{DIA}=\widehat{IAB}\)
=>AB//DI
=>AB//CD
=>ABCD là hình thang
b: AB//CI
=>\(\widehat{ABI}=\widehat{CIB}\)
mà \(\widehat{CBI}=\widehat{CIB}\)
nên \(\widehat{ABI}=\widehat{CBI}\)
=>BI là phân giác của \(\widehat{ABC}\)
a/
Ta có
DC=AD+BC (gt)
CI=BC (gt)
=> DC=AD+CI
Ta có
DC=DI+CI
=> AD=DI => tg ADI cân tại D \(\Rightarrow\widehat{DAI}=\widehat{DIA}\)
Mà \(\widehat{DAI}=\widehat{BAI}\)
\(\Rightarrow\widehat{DIA}=\widehat{BAI}\) Mà 2 góc này ở vị trí so le trong
=> AB//CD => ABCD là hình thang
b/
Ta có
CI=BC (gt) => tg BCI cân tại C \(\Rightarrow\widehat{CBI}=\widehat{CIB}\)
Ta có
AB//CD \(\Rightarrow\widehat{ABI}=\widehat{CIB}\) (góc so le trong)
\(\Rightarrow\widehat{CBI}=\widehat{ABI}\) => BI là phân giác của góc B
b1 a) goi I la giao diem cua AD va BC
vi AB//DC => goc IDC = goc DAB (2 goc dong vi)
ma goc A =30 => goc IDC =30
lai co goc IDC + goc ADC =180 ( I,D,A thang hang)
30+ goc ADC =180 => goc ADC=150
vi AB//DC => goc ICD = goc CBA (2 goc dong vi)
có goc ICD+ goc DCB =180 (I,C,B thang hang )
goc ICD+ 120=180 => goc ICD = 60 => goc ABC=60
còn ý b) bạn làm tương tự nhé
b2
vi DC =BC (gt) => tam giac DCB can tai C => goc CDB = goc DBC (1)
vi DB la phan giac cua goc ADC => g ADB =g BDC (2)
tu (1,2) => g ADB = g DBC
ma 2 goc nay o vi tri so le trong
=> AD// BC => ABCD la hinh thang
Bài 1:
Ta có: AE = AD (gt)
=> Tam giác AED là tam giác cân tại A
=> Góc AED = góc ADE = \(\frac{180-A}{2}\)
Ta có: tam giác ABC cân tại A
=> Góc B = góc C = \(\frac{180-A}{2}\)
=> Góc AED = góc B
Mà 2 góc này ở vị trí đồng vị => ED//BC => BEDC là hình thang
Ta có: góc B = góc C ( tam giác ABC cân tại A)
=> BEDC là hình thang cân
Mình chứng minh tời đây chắc bạn hiểu rồi ha, câu b và c dễ ẹt
Câu hỏi của Hoàng Anh - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
Bài 1:
a.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = 1800 - D = 1800 - 540 = 1260
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 - C = 1800 - 1050 = 750
b.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = (1800 - 320) : 2 = 740
=> D = 1800 - 740 = 1060
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 : (1 + 2) . 2 = 1200
=> C = 1800 - 1200 = 600
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha