Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)
\(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)
\(=100.\frac{2}{101}=\frac{200}{101}\)
Mấy câu trên dễ rồi mình hướng dẫn bạn làm câu d và e
d)
\(\left(x-\frac{2}{3}\right)\cdot\left(1-\frac{4}{16}x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{2}{3}=0\\1-\frac{1}{4}x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=4\end{cases}}\)
Câu e, tương tự nhé bạn
a. \(\frac{3}{4}x-\frac{1}{5}=\frac{2}{3}\)
\(\frac{3}{4}x=\frac{13}{15}\)
\(x=\frac{52}{45}\)
b. \(\frac{2}{5}.\left(x+1\right)-\frac{1}{2}=0\)
\(\frac{2}{5}.\left(x+1\right)=\frac{1}{2}\)
\(x+1=\frac{5}{4}\)
\(x=\frac{1}{4}\)
c.\(\frac{1}{5}.x-\frac{2}{3}=\frac{4}{8}\)
\(\frac{1}{5}.x=\frac{7}{6}\)
\(x=\frac{35}{6}\)
d. \(\left(x-\frac{2}{3}\right).\left(1-\frac{4}{16}x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{2}{3}=0\\1-\frac{4}{16}x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0+\frac{2}{3}\\\frac{4}{16}x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=4\end{cases}}}\)
Vậy x = 2/3 hoặc x = 4
e. \(\left(0,32-x\right).\left(4,5-\frac{3}{2}x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}0,32-x=0\\4,5-\frac{3}{2}x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0,32-0\\\frac{3}{2}x=4,5\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0,32\\x=3\end{cases}}}\)
Vậy x = 0,32 hoặc x = 3
\(\Rightarrow\frac{3}{4}x+5-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}+3\)+3
\(\Rightarrow\left(\frac{3}{4}x-\frac{2}{3}x-\frac{1}{6}x\right)+\left(5+4-1\right)=\frac{1}{3}x+\left(4-\frac{1}{3}+3\right)\)
=>\(\frac{-1}{12}x+8=\frac{1}{3}x+\frac{20}{3}\)\(\Rightarrow\frac{-1}{12}x+8-\frac{1}{3}x=\frac{20}{3}\)
\(\Rightarrow\left(\frac{-1}{12}-\frac{1}{3}\right)x+8=\frac{20}{3}\)
\(\Rightarrow\frac{-5}{12}x+8=\frac{20}{3}\Rightarrow\frac{-5}{12}x=\frac{20}{3}-8\)
\(\Rightarrow\frac{-5}{12}x=\frac{-4}{3}\Rightarrow x=\frac{-4}{3}:\frac{-5}{12}=\frac{16}{5}\)
1,
Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)
\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)
\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)
Dấu "=" xảy ra khi x = 0, y = 13
Vậy Pmin = 6/7 khi x = 0, y = 13
2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6
3,
Ta có: \(10\le n\le99\)
\(\Rightarrow20\le2n\le198\)
\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)
\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)
\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)
Ta thấy chỉ có 36 là số chính phương
Vậy n = 32
4,
ÁP dụng TCDTSBN ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)
\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)
\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)
Vậy B = 8
a) xn.xm = xn + m
b) \(\frac{x^n}{x^m}=x^n:x^m=x^{n-m}\)
c) \(\left(x^n\right)^m=x^{n.m}\)
d) \(\left(x.y\right)^n=x^n,y^n\)
e) \(\left(\frac{x}{y}\right)^n=\frac{x^n}{y^n}\)
\(\frac{3}{4}\left(\frac{2}{5}\right)^{14}:\left(\frac{4}{25}\right)^6=\frac{3}{4}\left(\frac{2}{5}\right)^{14}:\left(\frac{2}{5}\right)^{2.6}=\frac{3}{4}\left(\frac{2}{5}\right)^2=\frac{3}{4}.\frac{4}{25}=\frac{3}{25}\)
a) \(x^n.x^m=x^{n+m}\)
b) \(\frac{x^n}{x^m}=x^n\div x^m=x^{n-m}\)
c) \(\left(x^n\right)^m=x^{n.m}\)
d) \(\left(x.y\right)^n=x^n.y^n\)
e) \(\left(\frac{x}{y}\right)^n=\frac{x^n}{y^n}\left(y\ne0\right)\)
Áp dụng \(\frac{3}{4}.\left(\frac{2}{5}\right)^{14}\div\left(\frac{4}{25}\right)^6=\frac{3}{4}.\frac{2^{14}}{5^{14}}\div\frac{4^6}{25^6}\)
\(=\frac{3}{4}.\frac{2^{14}}{5^{14}}.\frac{25^6}{4^6}\)
\(=\frac{3.2^{14}.\left(5^2\right)^6}{4.5^{14}.\left(2^2\right)^6}=\frac{3.2^{14}.5^{12}}{2^2.5^{14}.2^{12}}=\frac{3}{25}\)