K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1
Đồ thị
0,50
(2,0 điểm)
b) Tìm tọa độ giao điểm của đồ thị (P) và đường thẳng  (1,0 điểm)
1
Phương trình Hoành độ giao điểm x 2  x  4  x 2  2x  8  0
0,25
2
 x = 4; x =  2
0,25
x = 4  y  8; x =  2  y  2
0,25
Hai giao điểm là (4 ; 8), (-2; 2)
0,25
Cho phương trình x 2  2mx  2m  2  0 , (m là tham số) (1).
a) Giải phương trình (1) khi m = 1.
b) Chứng minh phương trình (1) luôn có hai nghiệm x1, x 2 . Với các giá trị nào của
tham số m thì x12 + x 22 = 12.
c) Với x1, x 2 là hai nghiệm phương trình (1), tìm giá trị lớn nhất của biểu thức
6(x1 + x 2 )
.
A=
x12 + x 22 + 4(x1 + x 2 )
a) Giải phương trình (1) khi m = 1. (0,75 điểm)
0,25
Khi m = 1 ta có pt : x 2  2x  0
x(x  2)  0 
0,25
Suy ra pt có hai nghiệm là 0 và 2
0,25
Bài 2
b) Chứng minh phương trình (1) luôn có hai nghiệm x1, x 2 . Với các giá trị nào của
(2,5 điểm)
tham số m thì x12 + x 22 = 12. (1,0 điểm)
'= m2 – 2m + 2 = (m 1)2 + 1 > 0, m
Kết luận phương trình luôn có hai nghiệm phân biệt
Theo định lí Vi-et: x1  x 2  2m ; x1x 2  2m  2

x12 + x 22 = 12  4m2  4m  4  12
 m  1; m  2
c) Tìm giá trị lớn nhất của biểu thức A (0,75 điểm)
3m
A
m2  m  1
A  1

(m  1)

2

m2  m  1

0,25
0,25
0,25
0,25

0,25

 1 dấu bằng xảy ra khi và chỉ m = 1  Kết luận

0,50
1

Bài 3
a) Giải phương trình x  x + 6. (1,0 điểm)
(2,0 điểm)
0,25
x  x + 6  x 6  x
2
0,25

x  13x  36  0
0,25

x = 9; x = 4
Thử lại x = 4 không thỏa, x = 9 thỏa.
Vậy x = 9
0,25
x + 1 3 x
b) Giải phương trình
+
= 4. (1,0 điểm)
x2
x
0,25
Điều kiện x  2 và x  0.
0,25
Phương trình trở thành (x +1)x + (3  x)(x  2) = 4x(x 2)
2

2x  7x  3  0
0,25
1
Giải ra ta được x1 = 3; x 2 = (thỏa điều kiện)  Kết luận:
0,25
2

Tam giác ABC có góc ACB
tù, H là chân đường cao vẽ từ A. Đường tròn đường kính
BH cắt AB tại điểm thứ hai là D. Đường tròn đường kính CH cắt AC tại điểm thứ hai là
E.
a) Chứng minh tứ giác ADEH là tứ giác nội tiếp.
  EDC
 .
b) Chứng minh EBH

c) Cho BH = a 3 , CH = a, góc ABC
 450. Tính diện tích hình quạt tròn giới
 và hai bán kính đi qua E và C trên đường tròn đường kính CH.
hạn bởi cung EC
A
D
E
B

Bài 4
(3,5 điểm)

H

C

(phục vụ câu a và b)
a) Chứng minh tứ giác ADEH là tứ giác nội tiếp (1,0 điểm).


BDH
 900  ADH
 900

0,50

  900
HEC


0,25
0,50


 AEH
 900
ADEH nội tiếp
  EDC

b) Chứng minh EBH
(1,0 điểm).



DEA = DHA (cùng chắn DA của đường tròn qua A, D, E, H)



(góc nhọn có cạnh tương ứng vuông góc)
DHA
= ABC




CED + CBD = CED
+ DEA
= 1800 nên BDEC nội tiếp


 của đường tròn qua B, D, E, C)
= EDC
 EBH
(cùng chắn CE
c) Tính diện tích hình quạt (1,0 điểm).
Từ giả thiết suy ra ABH vuông cân, nên AH = a 3 .
AH
a 3
  120  sđ EC
  60


tanACH
=
=
= 3  ACH
= 600  sđ EH
HC
a
2
2
πR 60 πa .
Squat 

360
24

----- HẾT ----2

0,25

0,25
0,25
0,25
0,25
0,25
0,50
0,25

0

a: Δ=(2m-1)^2-4*(-1)(m-m^2)

=4m^2-4m+1+4m-4m^2=1>0

=>(1) luôn có hai nghiệm phân biệt

b: m=x1-2x1x2+x2-2x1x2

=x1+x2-4x1x2

=2m-1+4(m-m^2)

=>m-2m+1-4m+4m^2=0

=>4m^2-5m+1=0

=>m=1 hoặc m=1/4

c: x1+x2-2x1x2

=2m-1+2m-2m^2=-2m^2+4m-1

=-2m^2+4m-2+1

=-2(m-1)^2+1<=1

a) Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(2m-5\right)\)

\(=\left(2m-2\right)^2-4\left(2m-5\right)\)

\(=4m^2-8m+4-8m+20\)

\(=4m^2-16m+24\)

\(=4m^2-2\cdot2m\cdot4+16+8\)

\(=\left(2m-4\right)^2+8>0\forall m\)

Vậy: Phương trình (1) luôn có hai nghiệm phân biệt \(x_1;x_2\)

27 tháng 1 2022

a/ Xét pt :

\(x^2-2\left(m-1\right)+2m-5=0\)

\(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-2m+1-2m+5=m^2-4m+6=\left(m-2\right)^2+2>0\forall m\)

\(\Leftrightarrow\) pt luôn có 2 nghiệm pb với mọi m

b/ Phương trình cớ 2 nghiệm trái dấu

\(\Leftrightarrow2m-5< 0\)

\(\Leftrightarrow m< \dfrac{5}{2}\)

c/ Theo định lí Vi - et ta có :

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=2m-5\end{matrix}\right.\)

\(A=x_1^2+x_2^2\)

\(=\left(x_1+x_2\right)^2-2x_1.x_2\)

\(=4\left(m-1\right)^2-2\left(2m-5\right)\)

\(=4m^2-8m+4-4m+10\)

\(=4m^2-12m+14=4\left(m^2-3m+\dfrac{9}{4}\right)+5=4\left(m-\dfrac{3}{2}\right)^2+5\ge5\)

\(A_{min}=5\Leftrightarrow m=\dfrac{3}{2}\)

27 tháng 1 2022

1, \(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-4m+6=\left(m-2\right)^2+2>0\)

Vậy pt luôn có 2 nghiệm pb với mọi m 

2, Vì pt có 2 nghiệm trái dấu 

\(x_1x_2=\dfrac{c}{a}=2m-5< 0\Leftrightarrow m< \dfrac{5}{2}\)

3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)

\(A=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m-1\right)^2-2\left(2m-5\right)\)

\(=4m^2-12m+14=4m^2-2.2m.3+9+6\)

\(=\left(2m-3\right)^2+6\ge6\forall m\)

Dấu ''='' xảy ra khi m = 3/2 

Vậy với m = 3/2 thì A đạt GTNN tại 6 

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?

PT cuối cũng bị lỗi.

Bạn xem lại đề!

1 tháng 4 2021

Em sửa rồi ấy ạ

28 tháng 1 2022

1, Với x >=  0 ; x khác 1 

\(P=\dfrac{\sqrt{x}\left(x-1\right)+2\sqrt{x}\left(\sqrt{x}-1\right)-\left(3x+1\right)\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}+2x-3\sqrt{x}-3x\sqrt{x}-3x-\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{-2x\sqrt{x}-x-4\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)

 

28 tháng 1 2022

mình sửa đề câu 2 nhé 

a, \(x^2+mx-1=0\)

\(\Delta=m^2-4\left(-1\right)=m^2+4>0\)

Vậy pt luôn có 2 nghiệm pb 

b, Theo Vi et : \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-1\end{matrix}\right.\)

Ta có : \(\left(x_1+x_2\right)^2-2x_1x_2=7\)

Thay vào ta được : \(m^2+2=7\Leftrightarrow m^2=5\Leftrightarrow m=\pm\sqrt{5}\)

 

Δ=(m+1)^2-4(2m-8)

=m^2+2m+1-8m+32

=m^2-6m+33

=(m-3)^2+24>=24

=>Phương trình luôn có hai nghiệm pb

x1^2+x2^2+(x1-2)(x2-2)=11

=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11

=>(m+1)^2-(2m-8)-2(m+1)+4=11

=>m^2+2m+1-2m+8-2m-2-7=0

=>m^2-2m-8=0

=>(m-4)(m+2)=0

=>m=4 hoặc m=-2