K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

10 \(\le\)\(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298

Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương

=> 2n + 1 thuộc { 25 ; 49  ; 81 ; 121 ;  169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )

Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298

=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )

Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương

29 tháng 11 2018

bài cô giao đi hỏi 

7 tháng 7 2016

Do \(n+1\)không chia hết cho 4 nên \(n=4k+r\in\left\{0;2;3\right\}\)

Ta có : \(7^4-1=2400\div100\)

Ta viết : \(7^n+2=7^{4k+r}+2=7^r\left(7^{4k}-1\right)+7^r+2\)

Vậy hai chữ số tận cùng của \(7^n+2\) cũng chính là hai chữ số tận cùng của \(7^r+2\left(r=0;2;3\right)\) nên chỉ có thể \(03;51;45\)theo tính chất 5 thì rõ ràng \(7^n+2\) không thể là số chính phương khi n không chia hết cho 4 

7 tháng 7 2016

Do n+1 không chia hết cho 4 nên n=4k + r \(r\in\left\{0;2;3\right\}\)

Ta có : \(7^4-1=2400:100\)

Ta viết:\(7^n+2=7^{4k+r}+2=7^r\left(7^{4k}-1\right)+7^r+2\)

Vậy hai chữ số tận cùng của 7^n+2 cũng chính là hai chữ số tận cùng của 7^r+2 (r=0;2;3) nên chỉ có thể 03,51,45 theo tính chất 5 thì rõ ràng 7^n+2 không thể là số chính phương khi n không chia hết cho 4

19 tháng 12 2020

Đặt A=n!+2003
Với n=0⇒A=2004 không phải số chính phương
Với n=1,2,3,4,5 ta có điều tương tự
Với n>5⇒n! tận cùng là 0
⇒A tận cùng là 3
Vậy A không là số chính phương với mọi n

18 tháng 9 2021

a) có tất cả số hạng là:

(20042-12):10+1=2004

tổng là:

\(\dfrac{\text{(20042+12).2004}}{2}\)\(=20094108\)

16 tháng 3 2016

Cho n thuộcN ; $n\ge2$n≥2 

a/ CMR n và n- 1 là hai số nguyên tố cùng nhau 

b/ CMR tích của ba số n - 1 ; n ; n + 1 không phải là số chính phương 

Toán lớp 6Số nguyên tố

ai tích mình tích lại nh nha