K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2019

\(x^4-x^3+2x^2-x+1\)

\(=x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^2+1\right)>0\forall x\)

=> phương trình vô nghiệm

28 tháng 1 2019

bạn ơi tại sao \(\left(x^2-x+1\right)\left(x^2+1\right)>0\forall x\)

6 tháng 3 2018

Phải là x4-x3+2x2-x+1=0

Ta có : x4 - x3 + 2x2 - x + 1

= ( x4 + 2x2 + 1 ) - ( x3 + x )

= ( x2 + 1 )2 - x( x2 + 1 )

= (x2 + 1) ( x2 + 1 - x)

vì x2 > 0 và x2-x + 1 > 0

Nên pt đã cho vô nghiệm.

6 tháng 3 2018

ngu thế bài này mà ko bài này ko biết làm

a) \(x^4-2x^3+4x^2-3x+2=0\)

\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x+2=0\)

\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+3\left(x^2-x+\frac{1}{4}\right)+\frac{5}{4}=0\)

\(\Leftrightarrow\left(x^2-x\right)^2=3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}=0\)

 Vì (x2 -x )\(\ge0\)với mọi x

\(\Rightarrow\left(x^2-x\right)^2+3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}>0\)với mọi x

=> Phương trình trên vô nghiệm - đpcm

b) Ta có

x6+x5+x4+x3+x2+x+1=0

Nhận thấy x = 1 không là nghiệm của phương trình. Nhân cả hai vế của phương trình với x-1 được :

(x−1)(x6+x5+x4+x3+x2+x+1)=0

⇔x7−1=0

⇔x7=1

⇔x=1

(vô lí)

Điều vô lí chứng tỏ phương trình vô nghiệm.

27 tháng 2 2020

a)5(x+2)=2(x+7)+3x-4

<=>5x+10=2x+14+3x-4

<=>5x+10=5x+10

=>PT sau vô nghiệm

đpcm.

b)(x+2)2=x2+2x+2 (x+2)

<=>x2+4x+4=x2+4x+4

=> PT sau vô nghiệm

=>đpcm.

27 tháng 2 2020

bn sửa lại giúp tớ nhé tớ ghi lại đề bài rồi hi

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

5 tháng 7 2019

Ta có:\(x^4-x^3+2x^2-x+1=0\)

\(\Leftrightarrow x^4-x^3+x^2+x^2-x+1=0\)

\(\Leftrightarrow\left(x^4-x^3+x^2\right)+\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+1\right)=0\)

Vì \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(x^2+1\ge1\)

nên \(\left(x^2-x+1\right)\left(x^2+1\right)\ge\frac{3}{4}\)

Vậy Pt trên vô nghiệm

\(x^4-x^3+2x^2-x+1=0\)

\(\Leftrightarrow x^4+x^2-x^3-x+x^2+1=0\)

\(\Leftrightarrow\left(x^4+x^2\right)-\left(x^3+x\right)+\left(x^2+1\right)=0\)

\(\Leftrightarrow x^2\left(x^2+1\right)-x\left(x^2+1\right)+\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)

\(\Rightarrow x^2+1=0\)( do \(x^2-x+1\)là bình phương thiếu nên không thể bằng 0)

\(\Leftrightarrow x^2=-1\)( vô lý )

Do đó : Phương trình đã cho vô nghiệm

6 tháng 3 2020

a) \(ĐKXĐ:x\inℝ\)

\(\frac{x^2+2x+3}{x^2-x+1}=0\)

\(\Leftrightarrow x^2+2x+3=0\)

\(\Leftrightarrow\left(x+1\right)^2+2=0\left(ktm\right)\)

\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)

b) \(ĐKXĐ:x\ne\pm2\)

 \(\frac{x}{x+2}+\frac{4}{x-2}=\frac{4}{x^2-4}\)

\(\Leftrightarrow\frac{x}{x+2}+\frac{4}{x-2}-\frac{4}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{x\left(x-2\right)+4\left(x+2\right)-4}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow x^2-2x+4x+8-4=0\)

\(\Leftrightarrow x^2+2x+4=0\)

\(\Leftrightarrow\left(x+1\right)^2+3=0\left(ktm\right)\)

\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)

2 tháng 4 2016

+) Nếu x<0 ta có

x^6>0, x^5<0, x^4>0, x^3<0,x^2>0, x<0=>x^6-x^5+x^4-x^3+x^2-x > 0=>x^6-x^5+x^4-x^3+x^2-x+3/4>0(trái với đề bài)

+)Nếu x > hoặc =0 thì x^6>x^5, x^4>x^3, x^2>x, 3/4>0 =>x^6-x^5+x^4-x^3+x^2-x+3/4>0(trái với đề bài)

Vậy phương trình trên vô nghiệm