Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
A chia hết cho 15 nên A chia hết cho 3 và A chia hết cho 5
Bài 1:
a) Ta có: \(\left(2x-1\right)^{20}=\left(2x-1\right)^{18}\)
\(\Leftrightarrow\left(2x-1\right)^{20}-\left(2x-1\right)^{18}=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\left[\left(2x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left(2x-1\right)^{18}\cdot\left(2x-2\right)\cdot2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
b) Ta có: \(\left(2x-3\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
c) Ta có: \(\left(x-5\right)^2=\left(1-3x\right)^2\)
\(\Leftrightarrow\left(x-5\right)^2-\left(3x-1\right)^2=0\)
\(\Leftrightarrow\left(x-5-3x+1\right)\left(x-5+3x-1\right)=0\)
\(\Leftrightarrow\left(-2x-4\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Bài 2:
a) \(15^{20}-15^{19}=15^{19}\left(15-1\right)=15^{19}\cdot14⋮14\)
b) \(3^{20}+3^{21}+3^{22}=3^{20}\left(1+3+3^2\right)=3^{20}\cdot13⋮13\)
c) \(3+3^2+3^3+...+3^{2007}\)
\(=3\left(1+3+3^2\right)+...+3^{2005}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{2005}\right)⋮13\)
\(a,\left(n+10\right)\left(n+15\right)\)
Với n lẻ \(\Rightarrow n=2k+1\left(k\in N\right)\)
\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2k+11\right)\left(2k+16\right)=2\left(k+8\right)\left(2k+11\right)⋮2\)
Với n chẵn \(\Rightarrow n=2q\left(q\in N\right)\)
\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2q+10\right)\left(2q+15\right)=2\left(q+5\right)\left(2q+15\right)⋮2\)
Suy ra đpcm
\(b,\) Với n chẵn \(\Rightarrow n=2k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)
Với n lẻ \(\Rightarrow n=2q+1\Rightarrow n+1=2q+2=2\left(q+1\right)⋮2\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮2\)
Với \(n=3k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)
Với \(n=3k+1\Rightarrow2n+1=6k+3=3\left(2k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)
Với \(n=3k+2\Rightarrow n+1=3\left(k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮3\)
Suy ra đpcm
a, \(\frac{2x+5}{x+2}=\frac{2\left(x+2\right)+1}{x+2}=\frac{1}{x+2}\)
\(\Rightarrow x+2\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng
x + 2 | 1 | -1 |
x | -1 | -3 |
b, \(\frac{3x+5}{x-2}=\frac{3\left(x-2\right)+9}{x-2}=\frac{9}{x-2}\)
\(\Rightarrow x-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Ta có bảng :
x - 2 | 1 | -1 | 3 | -3 | 9 | -9 |
x | 3 | 1 | 5 | -1 | 11 | -7 |
b) A=2+22+23+...+220
A=(2+22)+(23+24)+...+(219+220)
A=3.2+3.23+...+3.219
A=3.(2+23+25+...+219)
⇒A⋮3
phần c) làm tương tự
2: \(\Leftrightarrow x+2\in\left\{1;-1\right\}\)
hay \(x\in\left\{-1;-3\right\}\)
Nếu x = 1
Ta có 2x + 5 = 7 và x + 2 = 3
mà 7 không chia hết cho 3 => Đề vô lí
=> Bạn kiểm tra lại bài toán
=> Hoặc đề là: Tìm số nguyên x.
a) \(2x+5⋮x+2\)
\(2x+4+1⋮x+2\)
\(2\left(x+2\right)+1⋮x+2\)
Ta có : \(x+2⋮x+2\)
\(\Rightarrow2\left(x+2\right)⋮x+2\)
\(\Rightarrow1⋮x+2\)
\(\Rightarrow x+2\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow x=\left\{-3;-1\right\}\)
b) \(3x+5⋮x-2\)
\(3x-6+1⋮x-2\)
\(3\left(x-2\right)+1⋮x-2\)
Ta có : \(x-2⋮x-2\)
\(\Rightarrow3\left(x-2\right)⋮x-2\)
\(\Rightarrow1⋮x-2\)
\(\Rightarrow x-2\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow x=\left\{1;3\right\}\)