Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì Ox // O'x' nên \(\widehat{O_1}=\widehat{O'_1}\) (2 góc đồng vị) (1)
Vì Oy // O'y' nên \(\widehat{O_2}=\widehat{O'_2}\) (2 góc đồng vị) (2)
Từ (1) và (2) suy ra:
\(\widehat{O_1}-\widehat{O_2}=\widehat{O'_1}-\widehat{O'_2}\)
hay \(\widehat{xOy}=\widehat{x'O'y'}\).
Đặt H là giao điểm của Oy và O'x'
Vì Ox//O'x'
=>O1ˆO1^=H1ˆH1^( đồng vị)
Vì Oy//O'y'
=>H1ˆH1^=O′1ˆO1′^( đồng vị)
Do đó:O1ˆO1^=O′1ˆO1′^
VậyxOyˆ=x′O′y′ˆxOy^=x′O′y′^
x x* y y* o o* 1 1 h1
Ta có: góc xOy = 1500 x z a z o y 150o
Mà góc OAz = 300
=> góc xOy + góc OAz = 1800
Mà hai góc này ở vị trí TCP
=> Az // Oy
Vì Az' là tia đối của Az
Nên zz' // Oy (đpcm).
OM là phân giác của ˆxOyxOy^
⇒ˆxOM=ˆyOM=ˆxOy2=70o⇒xOM^=yOM^=xOy^2=70o
Ta có zz,//Oy
⇒ˆOAz,=ˆAOy⇒OAz,^=AOy^ mà ˆAOy=150o⇒ˆOAz,=150oAOy^=150o⇒OAz,^=150o
AN là phân giác của ˆOAz,OAz,^
⇒ˆNAz,=ˆNAO=ˆOAz,2=70o⇒NAz,^=NAO^=OAz,^2=70o
Ta có ˆNAO=ˆAOM=70oNAO^=AOM^=70o mà chúng ở vị trí so le trong do AO cắt AN và OM
=> AN//OM
) Gọi 2 góc so le trong là ABC và BCD, Bx và Cy là phân giác của ABC và BCD => ABC = BCD => ABC/2 = BCD/2 => xBC = BCy
Do đó Bx song song Cy
2)a)Từ B kẻ Bz song song Ax => Bz song song Cy
Ta có xAB = ABz và yBC = zBC
Do đó ABC = xAB + yBC = A + C
b) Kẻ Bz song song Ax => ABz = A
Mà ABC = A + C nên zBC = C => Bz song song Cy
Do đó Ax song song Cy