\(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\) chia hết cho 120 ( vớ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2020

Bài 1:

Ta có:

\(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\)

\(=\left(3^{x+1}+3^{x+2}+3^{x+3}+3^{x+4}\right)+...+\left(3^{x+97}+3^{x+98}+3^{x+99}+3^{x+100}\right)\)

\(=3^x.\left(3+3^2+3^3+3^4\right)+...+3^{x+96}.\left(3+3^2+3^3+3^4\right)\)

\(=3^x.120+3^{x+4}.120+...+3^{x+96}.120\)

\(=120.\left(3^x+3^{x+4}+...+3^{x+96}\right)\)

\(120⋮120.\)

\(\Rightarrow120.\left(3^x+3^{x+4}+...+3^{x+96}\right)⋮120\)

\(\Rightarrow3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}⋮120\left(\forall x\in N\right)\left(đpcm\right).\)

Chúc bạn học tốt!

5 tháng 1 2020

Bài 2:

\(f\left(x_1.x_2\right)=f\left(x_1\right).f\left(x_2\right)\)

\(\Rightarrow f\left(4\right)=f\left(2.2\right)=f\left(2\right).f\left(2\right)=10.10=100\)

\(\Rightarrow f\left(16\right)=f\left(4.4\right)=f\left(4\right).f\left(4\right)=100.100=10000.\)

\(\Rightarrow f\left(32\right)=f\left(16.2\right)=f\left(16\right).f\left(2\right)=10000.10=100000.\)

Vậy \(f\left(32\right)=100000.\)

Chúc bạn học tốt!

6 tháng 11 2018

a) theo tính chất  ta có: f(0+0)= f(0)+f(0)

=> f(0)=f(0)+f(0)

=> f(0)-f(0)=f(0)+f(0)-f(0)

=> 0=f(0)

hay f(0)=0

b)  f(0)=f(-x+x)=f(-x)+f(x)

=>0=f(-x)+f(x)

=> f(-x)=0-f(x)=-f(x)

c) \(f\left(x_1-x_2\right)=f\left(x_1+\left(-x_2\right)\right)=f\left(x_1\right)+f\left(-x_2\right)=f\left(x_1\right)-f\left(x_2\right)\)

24 tháng 12 2018

Bài 1:

nếu x1<x2=>2018.x1-3<2018.x2

=>f(x1)<f(x2)

Bài 2:

nếu x dương=>100x2+2 dương

nếu x âm=>100x2+2 dương vì  xluôn dương

=>f(x)=f(-x)

Bài 3:

nếu x1<x2=>-2019x1+1<2019x2+1

=>f(x1)<f(x2)

15 tháng 6 2017

a, f(10x) = k.(10x) = 10.(kx) = 10.f(x)

b, f(x1 + x2) = k(x1 + x2) = kx1 + kx2 = f(x1) + f(x2)

c, f(x1 - x2) = k(x1 - x2) = kx1 - kx2 = f(x1) - f(x2)