Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab\).
\(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(b+a\right)}=\frac{a}{b}\)
Ta có :
\(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}\)
\(\frac{a}{b}=\frac{a}{c}.\frac{c}{b}=\left(\frac{a}{c}\right)^2\)
Mà \(\frac{a^2+c^2}{c^2+b^2}=\left(\frac{a}{c}\right)^2=\frac{a}{b}\). Vậy \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
\(\dfrac{a}{b}=\dfrac{b}{c}\Rightarrow ac=b^2\)
\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\)
Bài 3 :
\(a)\left|3x-2\right|=x\)
\(\Rightarrow\orbr{\begin{cases}3x-2=x\\3x-2=-x\end{cases}\Rightarrow\orbr{\begin{cases}3x-x=2\\3x+x=2\end{cases}\Rightarrow}\orbr{\begin{cases}2x=2\\4x=2\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)
vậy \(x=1;x=\frac{1}{2}\)
Bài 10
\(a)\)cách 1: cm vế trái bằng vế phải
\(\left(a-b\right)^2=\left(a-b\right)\left(a-b\right)\)
\(=a^2-ab-ab+b^2\)
\(=a^2-2ab+b^2\)
cách 2 : cm vế phải = vế trái
\(a^2-2ab+b^2=a^2-ab-ab+b^2=\left(a-b\right)\left(a-b\right)=\left(a-b\right)^2\)
\(b)A=\left(5x^4-3y^3\right)^2\)
\(=\left(5x^4\right)^2-2\times5x^4\times3y^3+\left(3y^3\right)^2\)
\(=25x^8-30x^4y^3+9y^6\)
3.a.
ta có
\(|3x-2|=x\\\Rightarrow\orbr{\begin{cases}3x-2=x\\-3x+2=x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x-x=2\\-3x-x=-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=2\\-4x=-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)
10a:
ta có
\(\left(a-b\right)^2=\left(a-b\right)\left(a-b\right)\)
rồi nhân ra là dc
10b:
ta có
\(\left(5x4-3y3\right)^2\)
\(=\left(20x-9y\right)^2\)
\(=\left(400x^2-2.20x.9y+81y^2\right)\)
rồi rút gọn là dc bạn ạ
\(a,\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow\dfrac{a^2}{c^2}=\dfrac{c^2}{b^2}=\dfrac{a^2+c^2}{b^2+c^2}\left(1\right)\)
Mà \(\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow ab=c^2\Leftrightarrow\dfrac{a}{b}=\dfrac{c^2}{b^2}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\tođpcm\)
\(b,\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow ab=c^2\)
\(\Leftrightarrow\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{\left(b-a\right)\left(b+a\right)}{a^2+ab}=\dfrac{\left(b-a\right)\left(b+a\right)}{a\left(a+b\right)}=\dfrac{b-a}{a}\left(đpcm\right)\)
10. a) Ta có : (a + b)2 + (a – b)2 = 2(a2 + b2). Do (a – b)\(^2\) ≥ 0, nên (a + b)\(^2\) ≤ 2(a2 + b2).
b) Xét : (a + b + c)\(^2\) + (a – b)\(^2\) + (a – c)\(^2\) + (b – c)\(^2\)
. Khai triển và rút gọn, ta được : 3(a\(^2\) + b\(^2\) + c\(^2\)).
Vậy : (a + b + c)\(^2\) ≤ 3( a\(^2\) + b\(^2\) + c\(^2\)).
Cách khác : Biến đổi tương đương
a, \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)luôn đúng
b, \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\le3a^2+3b^2+3c^2\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(Luôn đúng)
Yêu cầu đề là gì vậy bn ???????????????
Đề yêu cầu là chứng minh nhé mấy bạn!!!!!!!